(Press-News.org) Covid-19 showed us how vulnerable the world is to pandemics – but what if the next pandemic were somehow engineered? How would the world respond – and could we stop it happening in the first place?
These are some of the questions being addressed by a new initiative launched today at the University of Cambridge, which seeks to address the urgent challenge of managing the risks of future engineered pandemics.
The Engineered Pandemics Risk Management Programme aims to understand the social and biological factors that might drive an engineered pandemic and to make a major contribution to building the UK’s capability for managing these risks. It will build a network of experts from academia, government, and industry to tackle the problem.
Increased security threats from state and non-state actors, combined with increased urbanisation and global mobility, means the threat of deliberate pathogen release must be taken seriously as must other intertwined aspects of pandemic risk such as mis- and disinformation, the erosion of trust in a number of institutions and an increasingly volatile geopolitical context. Further potential risks are posed by recent developments in gene-editing tools and artificial intelligence, which have rapidly advanced technological capability that may make it easier to engineer potential pandemic pathogens.
Professor Clare Bryant from the Department of Medicine at the University of Cambridge said: “There is a great opportunity to take a joined-up approach to managing the risks posed by engineered pandemics. We need experts and agencies across the spectrum to work together to develop a better understanding of who or what might drive such events and what their likely impact would be. And we need evidence-informed policies and networks in place that would help us respond to – or better still, prevent – such an eventuality.”
The aims of the Engineered Pandemics Risk Management Programme are:
To develop the conceptual underpinnings for the risk management of engineered pandemics based on interdisciplinary research
To support the capability of the UK’s engineered pandemic risk policy and practice, including building and maintaining networks that connect government, academia and industry.
To strengthen the international networks that will support this work globally
There are four main strands of work:
Social determinants of engineered pandemic threat
This strand will look at the actors who have the potential to engineer harmful pathogens, either deliberately or accidentally. It will ask questions such as: What could motivate bioterrorism in the coming decades? Who might the relevant actors be? What are the kinds of engineered pandemic that someone might want to create?
Dr Rob Doubleday, Executive Director of the Centre for Science and Policy at the University of Cambridge, said: “The common narrative is that there’s a wide range of potential actors out there who want to create bioweapons but don’t yet have the technical means. But in fact, there’s been very little work to really understand who these people might be, and their relationship to emerging technology. To explore these questions, we need a broad network including social scientists, biosecurity researchers, criminologists, experts in geopolitics and counterterrorism.”
The strand will also look at the governance of scientific research in areas that may facilitate an engineered pandemic, whether unwittingly or maliciously, aiming to deliver a policy framework that enables freedom of intellectual research while managing real and apparent risk in infectious disease research.
Professor Bryant said: “As scientists, we’re largely responsible for policing our own work and ensuring integrity, trustworthiness and transparency, and for considering the consequences of new knowledge and how it might be used. But with the rapid progress of genomic technologies and AI, self-regulation becomes more difficult to manage. We need to find governance frameworks that balance essential scientific progress with its potential misapplication.”
Biological determinants of engineered pandemic threat
Recognising that the most likely cause of an engineered pandemic would be the deliberate release of a naturally-occurring pathogen – viral or bacterial, for example – rather than a man-made pathogen, this strand aims to understand what might make a particular pathogen infectious and how our immune systems respond to infection. This knowledge will allow researchers to screen currently available drugs to prevent or treat infection and to design vaccines quickly should a pandemic occur.
Modelling threats and risk management of engineered pandemics
The Covid-19 pandemic highlighted practical problems of dealing with pandemic infections, from the provision of personal protective equipment (PPE) to ensuring a sufficient supply of vaccine doses and availability of key medications. Modelling the potential requirements of a pandemic, how they could be delivered, how ventilation systems could be modified, what biosafety measures could be taken, for example, are all key challenges for managing any form of pandemic. This strand will address how existing modelling approaches would need to be adapted for a range of plausible engineered pandemics.
Policy innovation challenges
Working with the policy community, the Cambridge team will co-create research that directly addresses policy needs and involves policy makers. It will support policy makers in experimenting with more joined-up approaches through testing, learning and adapting solutions developed in partnership.
The Engineered Pandemics Risk Management Programme is supported by a £5.25 million donation to the Centre for Research in the Arts, Humanities and Social Sciences (CRASSH) at the University of Cambridge. The team intends it to form a central component of a future Pandemic Risk Management Centre, for which it is now fundraising.
Professor Joanna Page, Director of CRASSH, said: “Cambridge has strengths across a broad range of disciplines – from genetics and immunology to mathematical modelling to existential risk and policy engagement – that can make a much-needed initiative such as this a success.”
To find out more, visit the Engineered Pandemic Risk Management website.
END
Cambridge initiative to address risks of future engineered pandemics
2025-02-27
ELSE PRESS RELEASES FROM THIS DATE:
Unmasking inequalities in AI: new research reveals how artificial intelligence might reinforce inequality
2025-02-27
The researchers challenge the widespread belief that AI-induced bias is a technical flaw, arguing instead AI is deeply influenced by societal power dynamics. It learns from historical data shaped by human biases ,absorbing and perpetuating discrimination in the process. This means that, rather than creating inequality, AI reproduces and reinforces it.
“Our study highlights real-world examples where AI has reinforced existing biases.” Prof. Bircan says. “One striking case is Amazon’s AI-driven hiring tool, which was found to favor male candidates, ultimately reinforcing gender disparities in the job market. Similarly, government AI fraud detection ...
Taking sports science in her stride: How Dr. Nerea Casal García aims to maximize performance on the track
2025-02-27
The following is a Q&A with Dr Nerea Casal García, a sports scientist focusing on sports training and performance optimization. To speak to the author, or to receive an advance copy of the paper, please write to: press@frontiersin.org The paper will be published on 27 Feb 2025 06:15 CET]
Dr Nerea Casal García is an athlete, personal coach, and injury readaptation specialist who last year completed a PhD on observational analysis in elite sports. Today, she is a professor at the Institut Nacional ...
Pioneering work generates feline embryonic stem cells in boon for cats
2025-02-27
As different as they may seem, humans and cats have similar ailments, but in terms of health care, veterinary regenerative medicine is not as advanced.
A possible solution rests in embryonic stem cells, which can differentiate into various types of cells and be transplanted to restore internal damage. Further, they are characterized by their near-natural state similar to induced pluripotent stem (iPS) cells. Recent research has successfully generated feline iPS cells, but not embryonic stem cells, so research on these cell lines is essential to improve the quality ...
Decoding the link between colorectal cancer risk and steatotic liver disease
2025-02-27
Alcoholic and non-alcoholic fatty liver disease (NAFLD) are well-known risk factors for colorectal cancer (CRC). NAFLD has emerged as a heterogenous disease tightly linked to metabolic dysfunction and has been redefined under the umbrella term ‘steatotic liver disease’ (SLD). However, CRC risk variations across different SLD subgroups remain unknown. Now, researchers from Japan have discovered that the risk of CRC varies significantly among SLD subgroups, with patients with alcoholic liver disease being at higher risk.
Lifestyle-related disorders have become increasingly prevalent, representing a major health ...
Controlling conformational changes in protein aromatic side chains
2025-02-27
Novel protein cage system can control and visualize orientational changes in aromatic side chains upon ligand binding, as reported by researchers at Institute of Science Tokyo. By inducing coordinated molecular changes, this approach enables precise control over protein dynamics while also enhancing fluorescence properties. Their breakthrough could lead to applications in biomolecular robotics, drug delivery, and advancing the development of responsive biomaterials.
The dynamic nature of proteins—their ability to bend, fold, and change shape in response to their environment—underlies ...
Experimental and numerical analysis of the potential drop method for defects caused by dynamic loads
2025-02-27
In our paper “Experimental and Numerical Analysis of the Potential Drop Method for Defects Caused by Dynamic Loads”, we investigate how the electrodynamic proximity effect can be utilized to enhance the defect sensitivity of PDM in SHM applications by proper arrangement of the measurement setup. We showed how eddy current effects present in our PDM setup can be modeled analytically and numerically. Lock-in technique and the application of the skin effect allow high- resolution impedance ...
Chinese researchers make breakthrough in artificial chiral structural-color microdomes
2025-02-27
Chiral-structural-color materials produce color through microscopic structures that interact with light rather than through pigmentation or dyes. Some beetle exoskeletons, avian feathers, butterfly wings, and marine organisms feature these structures naturally, producing iridescent or polarization-dependent colors. Over the last 10–15 years, scientists have made progress in developing artificial chiral-structural-color materials.
Recently, Chinese researchers have made a breakthrough in the field by discovering that microdomes made from common polymers exhibit tunable chiral structural colors with broad-spectrum capabilities and multiple ...
Intermittent fasting inhibits platelet activation to reduce thrombosis risk
2025-02-27
Cardiovascular diseases remain a leading cause of death worldwide, with platelet hyperactivity and subsequent thrombosis playing a pivotal role in these conditions. While intermittent fasting has long been recognized for its metabolic benefits, including improvements in metabolic diseases, weight loss, and even lifespan extension, its effect on platelet activation and thrombosis formation remains less understood.
A recent study by Professor Junbo Ge team at Fudan University unveiled a novel mechanism by which intermittent fasting can significantly reduce the risk of platelet hyperactivity and thrombosis. That is, intermittent fasting elevates levels of the metabolite ...
A clear game-changer: Curtin’s water-repellent glass breaks new ground
2025-02-27
Curtin University researchers have developed a new technique to make glass water-repellent, a feature that could improve safety in vehicles, reduce cleaning costs for buildings and enhance filtration systems.
The research, published in the prestigious journal Advanced Functional Materials, shows how an innovative and non-toxic process using ultrasonic sound waves can alter the surface of glass, making it either hydrophobic (water resistant) or electrically charged.
Lead researcher Associate Professor Nadim Darwish, an ARC Future Fellow at Curtin’s ...
Are our refrigerants safe? The lingering questions about the chemicals keeping us cool
2025-02-27
A team of scientists at UNSW has discovered that some of the most important new refrigerants break down, in part, into persistent greenhouse gas pollutants, including compounds that have been banned internationally. Refrigerants are chemicals that turn from a liquid to a gas – and vice-versa – and transfer heat in the process, that are used for refrigeration and indoor heating and cooling. The chemicals are also used as aerosol propellants, fire retardants and in the manufacture of foamed plastics.
Hydrofluoroolefins (HFOs), which react rapidly in the lower atmosphere, have emerged as the lead synthetic chemical for refrigerants, and are considered a more environmentally friendly ...