ATP prevents harmful aggregation of proteins associated with Parkinson’s and ALS
ATP, the ‘fuel’ of our cells, has been found to make the cytosol in axons more liquid, stopping proteins from clustering and causing harm.
2025-04-23
(Press-News.org)
Neurodegenerative disease like Alzheimer’s, Parkinson’s, and ALS (amyotrophic lateral sclerosis) are debilitating conditions that affect millions of people worldwide every year. These pathologies are notoriously difficult to prevent or effectively treat due to a complex interplay of genetics, lifestyle, co-infection, and many other factors impacting everything from diagnosis to treatment.
While a comprehensive cure-all to these neurological conditions is unlikely, scientists are making headway into understanding their fundamental characteristics with the hope of preventing or alleviating cognitive and motor impairments. In a new study published in Science Advances, researchers from the Molecular Neuroscience Unit and the former Cellular and Molecular Synaptic Function Unit at the Okinawa Institute of Science and Technology (OIST) have now discovered that ATP, which is most commonly thought of as the ‘fuel’ of our cells, plays a surprising role in relation to neurodegenerative diseases. “We found that ATP regulates protein condensation and the overall viscosity of cytoplasm in neurons,” says Dr. Laurent Guillaud, lead author of the study. When the cytoplasm in axons – or the axoplasm – is more viscous, proteins are more prone to aggregate, which can lead to harmful tangles that damage the cells. “Through both in vitro and in vivo trials, we found that boosting ATP production decreases cytosolic viscosity in affected cells, dispersing existing and preventing future pathological protein aggregations.”
In many neurodegenerative diseases, one common symptom is the formation and accumulation of insoluble, membrane-less protein condensates via a process known as liquid-liquid phase separation. These protein aggregates can accumulate both inside and later outside the cells. For example, in late-stage Alzheimer’s disease, these may appear as neurofibrillary tangles.
Recent research has shown that ATP may play a direct role in regulating protein solubilization in vitro and cytoplasmic viscosity in yeast cells, acting as an important hydrotropic agent: a compound that increases the solubility of other, poorly water-soluble substances – including various proteins. Now, through their in vitro and in vivo experiments on human stem cell-derived neurons from both healthy and Parkinson’s and ALS patients, the team observed a direct relationship between the intracellular concentration of ATP and the solubility of the axoplasm and of proteins normally associated with neurodegenerative disorders, like SNCA in Parkinson’s, Tau in Alzheimer’s, and TDP-43 in ALS.
“Mammalian cells normally have an average ATP concentration of four to eight millimolar, which is surprisingly high, as the total concentration of ATP needed for all energy processes in the cell is only in the few hundreds of micromolar – an order of magnitude lower. This led us to focus on and examine the possible hydrotropic role of ATP in neurons, from which we found a remarkable correlation between the intracellular concentration of ATP and the axoplasmic viscosity in both physiological and pathological conditions,” explains Dr. Guillaud. For example, the researchers showed that in physiological conditions, local variations in ATP can also affect the viscosity of the cytosol, of synaptic vesicles and of active zones in the presynaptic compartment, changing the functional organization of the synapse.
ATP is largely produced by mitochondria, and mitochondrial functions and the rate of ATP synthesis naturally declines throughout our lifespan. Problems arise when other factors negatively affect mitochondrial health such as in Parkinson’s disease or ALS, which can lead to further reduction in the concentration of ATP, thereby decreasing the solubility of proteins and rendering the cytoplasm more viscous. As part of their experiments, the researchers found that boosting ATP production using NMN rescued cytosolic fluidity by breaking up and solubilizing existing protein aggregates in axons from ALS neurons.
Research into neurodegenerative diseases is highly complex given their multifaceted nature and while we are far from a comprehensive cure, key findings as reported by the researchers here have important implications for our understanding of the cellular mechanisms of the diseases, bringing us closer to one day being able to comprehensively prevent or treat these debilitating neurodegenerative disorders.
END
ELSE PRESS RELEASES FROM THIS DATE:
2025-04-23
Water quality could be degraded by development and conversion of forests upstream, with sediment levels and nitrogen concentrations also worsened, per modelling analysis of the Middle Chattahoochee watershed of Georgia, Alabama, and Florida.
####
Article URL: https://plos.io/3Gi6Kaq
Article Title: Projected land use changes will cause water quality degradation at drinking water intakes across a regional watershed
Author Countries: United States
Funding: This work was supported by the U.S. Department of Agriculture (USDA) ...
2025-04-23
Current ‘gold standard’ treatment does not work for up to 20% of population and kills beneficial bacteria
Scientists screened nearly 500 FDA-approved compounds to assess effectiveness against Lyme
Piperacillin effectively treats Lyme disease at 100-times lower dose than doxycycline
CHICAGO --- Lyme disease, a disease transmitted when deer ticks feed on infected animals like deer and rodents, and then bite humans, impacts nearly half a million individuals in the U.S. annually. Even in acute cases, Lyme can be devastating; but early treatment with antibiotics can prevent chronic symptoms like heart and neurological problems and arthritis from developing.
Scientists ...
2025-04-23
Up to 20% of patients treated for Lyme experience persistent symptoms
Lyme’s post-infection features share some similarities to long COVID-19 and could be due to lingering antigens
Individual differences in immune response to remnants of the Lyme bacterium’s cell wall likely play an important role in patient outcome.
CHICAGO --- Symptoms that persist long after Lyme disease is treated are not uncommon — a 2022 study found that 14% of patients who were diagnosed and treated early with antibiotic therapy would still develop Post Treatment Lyme Disease (PTLD). Yet doctors ...
2025-04-23
Inspired by the movements of a tiny parasitic worm, Georgia Tech engineers have created a 5-inch soft robot that can jump as high as a basketball hoop.
Their device, a silicone rod with a carbon-fiber spine, can leap 10 feet high even though it doesn’t have legs. The researchers made it after watching high-speed video of nematodes pinching themselves into odd shapes to fling themselves forward and backward.
The researchers described the soft robot April 23 in Science Robotics. They said their findings could help develop robots capable of jumping across various terrain, at different heights, in multiple directions.
“Nematodes are ...
2025-04-23
A team at UC San Francisco and Gladstone Institutes has developed new drug candidates that show great promise against the virus that causes COVID-19 and potentially other coronaviruses that could cause future pandemics.
In preclinical testing, the compounds performed better than Paxlovid against SARS-CoV-2 and the Middle East Respiratory Syndrome (MERS) virus, which periodically causes deadly outbreaks around the world.
“In three years, we’ve moved as fast as a pharmaceutical company would have, from start to finish, developing drug candidates against a totally new pathogen,” said Charles Craik, PhD, UCSF professor ...
2025-04-23
This release has been removed upon request of the submitting institution because it is a duplicate of an existing release. Please find the link here to the release: https://www.eurekalert.org/news-releases/1081239 Please contact Levi Gadye, levi.gadye@ucsf.edu for more information. END ...
2025-04-23
Caltech professor of medical engineering Wei Gao and his colleagues are envisioning a smart bandage of the future—a "lab on skin" that could not only help patients and caregivers monitor the status of chronic wounds but also deliver treatment and speed up the healing process for those cuts, incisions, scrapes, and burns that are slow to heal on their own.
In 2023, Gao's team cleared the first hurdle toward achieving that goal by showing that a smart bandage they developed could provide real-time ...
2025-04-23
“Our discovery has found a possible treatment that could specifically target and help patients with this disease”
(Boston)—The global burden of chronic kidney disease (CKD) is rising, with more than 800 million people affected worldwide. Vascular diseases in patients with CKD are unique and grouped as uremic vascular diseases. One of them, calciphylaxis, typically affects patients with end-stage, advanced kidney disease. It is a condition characterized by severe, painful and non-healing skin ulcers with no known cure.
For the first time, researchers from Boston University Chobanian ...
2025-04-23
Collagen is well-known as an important component of our skin, but its impact is much greater, as it is the most abundant protein in the body, providing structure and support to nearly all tissues and organs. Using their novel Freeform Reversible Embedding of Suspended Hydrogels (FRESH) 3D bioprinting technique, which allows for the printing of soft living cells and tissues, Carnegie Mellon’s Feinberg lab has built a first-of-its-kind microphysiologic system, or tissue model, entirely out of collagen. This advancement expands the capabilities of how researchers can study disease and build tissues for therapy, ...
2025-04-23
Chinese scientists have discovered that fragile swamp forests in the Pearl River Delta (PRD) region suddenly collapsed around 2.1 thousand years ago (ka)—with human activity as the cause.
The study, led by researchers from the Guangzhou Institute of Geochemistry and the Institute of Oceanology of the Chinese Academy of Sciences, sheds new light on the role of human activity in ecosystem collapse.
Published in Science Advances, the study focuses on Glyptostrobus pensilis (G. pensilis), a critically endangered species of Chinese swamp cypress that once thrived in extensive swamp forests in the PRD. Through palynological (i.e., pollen and ...
LAST 30 PRESS RELEASES:
[Press-News.org] ATP prevents harmful aggregation of proteins associated with Parkinson’s and ALS
ATP, the ‘fuel’ of our cells, has been found to make the cytosol in axons more liquid, stopping proteins from clustering and causing harm.