(Press-News.org) LOS ANGELES — It’s no secret that our waistlines often expand in middle-age, but the problem isn’t strictly cosmetic. Belly fat accelerates aging and slows down metabolism, increasing our risk for developing diabetes, heart problems and other chronic diseases. Exactly how age transforms a six pack into a softer stomach, however, is murky.
Now preclinical research by City of Hope®, one of the largest and most advanced cancer research and treatment organizations in the United States and a leading research center for diabetes and other life-threatening illnesses, has uncovered the cellular culprit behind age-related abdominal fat, providing new insights into why our midsections widen with middle age. Published today in Science, the findings suggest a novel target for future therapies to prevent belly flab and extend our healthy lifespans.
“People often lose muscle and gain body fat as they age—even when their body weight remains the same,” said Qiong (Annabel) Wang, Ph.D., the study’s co-corresponding author and an associate professor of molecular and cellular endocrinology at City of Hope’s Arthur Riggs Diabetes & Metabolism Research Institute, one of the world’s foremost scientific organizations dedicated to investigating the biology and treatment of diabetes. “We discovered aging triggers the arrival of a new type of adult stem cell and enhances the body’s massive production of new fat cells, especially around the belly.”
In collaboration with the UCLA laboratory co-corresponding author Xia Yang, Ph.D., the scientists conducted a series of mouse experiments later validated on human cells. Wang and her colleagues focused on white adipose tissue (WAT), the fatty tissue responsible for age-related weight gain.
While it’s well-known that fat cells grow larger with age, the scientists suspected that WAT also expanded by producing new fat cells, meaning it may have an unlimited potential to grow.
To test their hypothesis, the researchers focused on adipocyte progenitor cells (APCs), a group of stem cells in WAT that evolve into fat cells.
The City of Hope team first transplanted APCs from young and older mice into a second group of young mice. The APCs from the older animals rapidly generated a colossal amount of fat cells.
When the team transplanted APCs from young mice into the older mice, however, the stem cells did not manufacture many new fat cells. The results confirmed that older APCs are equipped to independently make new fat cells, regardless of their host’s age.
Using single-cell RNA sequencing, the scientists next compared APC gene activity in young and older mice. While barely active in young mice, APCs woke up with a vengeance in middle-aged mice and began pumping out new fat cells.
“While most adult stem cells’ capacity to grow wanes with age, the opposite holds true with APCs — aging unlocks these cells’ power to evolve and spread,” said Adolfo Garcia-Ocana, Ph.D., the Ruth B. & Robert K. Lanman Endowed Chair in Gene Regulation & Drug Discovery Research and chair of the Department of Molecular & Cellular Endocrinology at City of Hope. “This is the first evidence that our bellies expand with age due to the APCs’ high output of new fat cells.”
Aging also transformed the APCs into a new type of stem cell called committed preadipocytes, age-specific (CP-As). Arising in middle age, CP-A cells actively churn out new fat cells, explaining why older mice gain more weight.
A signaling pathway called leukemia inhibitory factor receptor (LIFR) proved critical for promoting these CP-A cells to multiply and evolve into fat cells.
“We discovered that the body’s fat-making process is driven by LIFR. While young mice don't require this signal to make fat, older mice do,” explained Wang. “Our research indicates that LIFR plays a crucial role in triggering CP-As to create new fat cells and expand belly fat in older mice.”
Using single-cell RNA sequencing on samples from people of various ages, Wang and her colleagues next studied APCs from human tissue in the lab. Again, the team also identified similar CP-A cells that had an increased number in middle-aged people’s tissue. Their discovery also illustrates that CP-As in humans have high capacity in creating new fat cells.
“Our findings highlight the importance of controlling new fat-cell formation to address age-related obesity,” said Wang. “Understanding the role of CP-As in metabolic disorders and how these cells emerge during aging could lead to new medical solutions for reducing belly fat and improving health and longevity.”
Future research will focus on tracking CP-A cells in animal models, observing CP-A cells in humans and developing new strategies that eliminate or block the cells to prevent age-related fat gain.
The study’s first authors are City of Hope’s Guan Wang, Ph.D., and UCLA’s Gaoyan Li, Ph.D.
# # #
About City of Hope
City of Hope's mission is to make hope a reality for all touched by cancer and diabetes. Founded in 1913, City of Hope has grown into one of the largest and most advanced cancer research and treatment organizations in the United States, and one of the leading research centers for diabetes and other life-threatening illnesses. City of Hope research has been the basis for numerous breakthrough cancer medicines, as well as human synthetic insulin and monoclonal antibodies. With an independent, National Cancer Institute-designated comprehensive cancer center that is ranked Top 5 in the nation for cancer care by U.S. News & World Report at its core, City of Hope brings a uniquely integrated model that spans cancer care, research and development, academics and training, and a broad philanthropy program that powers its work. City of Hope’s growing national system includes its Los Angeles campus, a network of clinical care locations across Southern California, a new cancer center in Orange County, California, and cancer treatment centers and outpatient facilities in the Atlanta, Chicago and Phoenix areas. City of Hope’s affiliated group of organizations includes Translational Genomics Research Institute and AccessHopeTM. For more information about City of Hope, follow us on Facebook, X, YouTube, Instagram and LinkedIn.
END
Researchers from SYSU and IHEP have developed a unique muon veto detector system for TAO, a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). This system features a top veto tracker system with remarkable characteristics such as high light yield, distinct signal-background differentiation and high detection efficiency even at high thresholds, provides the TAO experiment with a robust capability to suppress cosmic muon induced fast neutron and radioisotope events which are significant correlated backgrounds for the neutrino signal. This scalable solution establishes a transferable ...
Using a 3D printer to create organic tissue models that function like living organs may sound like science fiction — but engineers at the University of Pittsburgh are making it reality.
Central to their breakthrough is a simple yet powerful idea: when provided with the right environment, cells instinctively know how to organize and function. The key lies in designing scaffolds that mimic the body’s natural structures, giving cells the cues they need to grow, interact, and form tissues.
Daniel Shiwarski, assistant professor of bioengineering at the Swanson School of Engineering with a joint appointment at the School of Medicine’s Vascular ...
Background and objectives
Atypical trigeminal neuralgia (ATN) is a chronic pain condition characterized by persistent facial pain that does not respond well to conventional medical treatments, often leading to significant impairment in quality of life. This study examined the clinical characteristics and surgical outcomes of microvascular decompression combined with nerve combing in patients with ATN.
Methods
We conducted a retrospective analysis of surgical techniques, clinical data, and treatment outcomes in 40 patients from January 2009 to January 2018. Pain levels ...
Many products in the modern world are in some way fabricated using computer numerical control (CNC) machines, which use computers to automate machine operations in manufacturing. While simple in concept, the ways to instruct these machines is in reality often complex. A team of researchers including those from the University of Tokyo devised a system to demonstrate how to mitigate some of this complexity. Draw2Cut allows users to draw desired designs directly onto material to be cut or milled. In this case, color-coded lines drawn with standard marker pens instruct the Draw2Cut system to mill designs into wood without any prior knowledge of CNC machines or ...
A rare cell type in the lungs is essential to survival from the COVID-19 virus, a new study shows.
Experiments in mice infected with the SARS-CoV-2 virus revealed that the immune cell class in question, called nerve and airway-associated interstitial macrophages, or NAMs, may keep the human immune system’s initial counterattack on the virus (lung inflammation) from spiraling out of control to endanger patients. Macrophages are known to be the first responders to infection, as large immune cells capable of devouring invading viruses and the cells they infect.
Led by researchers at NYU Langone ...
About The Study: This economic evaluation estimates that expanded Medicare coverage for glucagon-like peptide-1 receptor agonists (GLP-1RAs) would increase access and reduce obesity-related comorbidities but impose substantial costs over 10 years. Even with a moderate scenario (5% uptake, 20% adherence, and 30% additional price discount), net spending was still projected to reach $8 billion over a decade, underscoring the need for further price reductions, lower-cost strategies to prevent weight regain, and reductions in spending ...
About The Study: The findings of these repeated cross-sectional surveys suggest that the difference in cigarette smoking prevalence between historically high vs low prevalence states will shrink by 2035, primarily from much faster declines among young adults in the traditionally highest prevalence states. Slower prevalence declines among older adults are likely to slow the decline in health consequences in these states.
Corresponding Author: To contact the corresponding author, John P. Pierce, PhD, email jppierce@health.ucsd.edu.
To access the embargoed study: Visit ...
Researchers at University of California San Diego found that cigarette smoking continues to decline across the United States, largely driven by young adults. Their study, published in JAMA Network Open on April 25, 2025, reveals that the states with historically high smoking rates have seen the most dramatic declines. However, smoking cessation progress among adults over 50 has been much slower, which could prolong the public health burden of smoking-related diseases and death.
“The rapid decline in smoking among young adults is clear evidence that the smoking epidemic will come to an end in our lifetime,” said Matthew ...
NFCR Congratulates Dr. Robert C. Bast, Jr. on Receiving the AACR-Daniel D. Von Hoff Award for Outstanding Contributions to Education and Training in Cancer Research
Rockville, MD — The National Foundation for Cancer Research (NFCR) proudly congratulates Dr. Robert C. Bast, Jr., a pioneering cancer scientist, and NFCR-supported investigator from 2001 to 2018, on being named the 2025 recipient of the AACR-Daniel D. Von Hoff Award for Outstanding Contributions to Education and Training in Cancer Research.
Presented by the American Association for Cancer Research (AACR), ...
Understanding how cells differentiate during early embryonic development is crucial for advancing regenerative medicine and developmental biology. Pluripotent stem cells (PSCs) have been invaluable tools in this field, as they can transform into various cell types in the body and play key roles during early embryonic development. Unfortunately, research on this topic in humans and other primates has long been hampered by ethical constraints and technical limitations.
Of particular interest are naive-type PSCs, which represent an earlier developmental state than conventional (or ‘primed’) PSCs and possess enhanced differentiation potential. While human naive PSCs can differentiate ...