PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Self-assembly of a large metal-peptide capsid nanostructure through geometric control

New hollow dodecahedral shell demonstrates remarkable stability and potential for functionalization and encapsulating macromolecules

2025-05-09
(Press-News.org)

Controlling the topology and structure of entangled molecular strands is a key challenge in molecular engineering, particularly when attempting to create large nanostructures that mimic biological systems. Examples found in nature, such as virus capsids and cargo proteins, demonstrate the remarkable potential of such architectures. However, methods for constructing large hollow nanostructures with precise geometric control have remained elusive—until now.

In a recent study, a research team led by Associate Professor Tomohisa Sawada from Institute of Science Tokyo, Japan, has successfully constructed a molecular spherical shell structure with the geometric topology of a regular dodecahedron. This groundbreaking work, which was published online in the journal Chem on May 01, 2025, describes how the researchers created this large structure, bearing an outer diameter of 6.3 nanometers, through the entanglement of peptides with metal ions. 

“The synthesis of this highly complex structure was based on geometric considerations and predictions, leading to the proposal of a new concept: the geometric control of chemical structures,” explains Sawada. The team’s approach combined two distinct mathematical frameworks, namely knot theory and graph theory, to predict and then achieve the self-assembly of an unprecedented dodecahedral link with an entanglement of 60 crossings, composed of 60 metal ions and 60 peptide ligands (or M60L60).

The researchers had previously created smaller structures with tetrahedral and cubic links. However, a more complex dodecahedral link emerged after they introduced further modifications to the peptide sequence during attempts to functionalize M24L24, a smaller cubic link. X-ray crystallographic analysis revealed that the resulting M60L60 metal-peptide shell contains an inner cavity of approximately 4.0 nanometers (approximately 34,000 ų), which is large enough to encapsulate macromolecules such as proteins or nanomaterials.

Beyond its impressive structural complexity, the M60L60 shell exhibited remarkable stability against heat, dilution, and oxidative conditions, which the researchers attributed to its unique entangled network structure. Interestingly, the team also demonstrated that the capsid’s surface could be modified with various functional groups while maintaining its structural integrity, opening pathways for customization based on specific needs.

These features make M60L60 a promising platform for various applications, including drug delivery systems and molecular transportation. “Considering the diversity and modifiability of peptide structures, our method is overwhelmingly advantageous compared to DNA origami technology in terms of functionalizing structures,” highlights Sawada. “Moreover, since our approach involves theoretical prediction and trial-and-error experiments, sometimes astonishing structures far beyond our expectations are obtained—this is the essence of chemistry.”

Overall, this research represents a significant step forward in understanding how to construct artificial virus capsid-like structures. “Our findings significantly expand the foundation of peptide engineering and are anticipated to have immense effects across various fields, including molecular self-assembly, materials chemistry, and mathematical theories,” concludes Sawada. The researchers are now aiming for even more ambitious structures, envisioning M180L180 and M240L240 assemblies with 180 and 240 crossings, respectively, as their next challenges.

 

***

About Institute of Science Tokyo (Science Tokyo)
Institute of Science Tokyo (Science Tokyo) was established on October 1, 2024, following the merger between Tokyo Medical and Dental University (TMDU) and Tokyo Institute of Technology (Tokyo Tech), with the mission of “Advancing science and human well-being to create value for and with society.”

END



ELSE PRESS RELEASES FROM THIS DATE:

Fatty liver in pregnancy may increase risk of preterm birth

2025-05-09
Pregnant women with metabolic dysfunction-associated steatotic liver disease (MASLD) have an increased risk of giving birth prematurely and the risk increase cannot be explained by obesity, according to a new study from Karolinska Institutet published in the journal eClinicalMedicine. It is estimated that one in five people in Sweden has MASLD, previously called non-alcoholic fatty liver disease, and globally it may be as many as three out of ten. Common risk factors are metabolic disorders such as type 2 diabetes and overweight or obesity. The disease has become increasingly common, including among women of reproductive age. Researchers have now ...

World record for lithium-ion conductors

2025-05-09
The team led by Prof. Thomas F. Fässler from the Chair of Inorganic Chemistry with a Focus on Novel Materials partially replaced lithium in a lithium antimonide compound with the metal scandium. This creates specific gaps, so-called vacancies, in the crystal lattice of the conductor material. These gaps help the lithium ions to move more easily and faster, resulting in a new world record for ion conductivity. Since the measured conductivity far exceeded that of existing materials, the team collaborated with the Chair of Technical Electrochemistry under Prof. Hubert Gasteiger at TUM to confirm the result. Co-author Tobias Kutsch who conducted the validation tests, commented: “Because ...

Researchers map 7,000-year-old genetic mutation that protects against HIV

2025-05-09
What do a millennia-old human from the Black Sea region and modern HIV medicine have in common? Quite a lot, it turns out, according to new research from the University of Copenhagen. 18-25 percent of the Danish population carries a genetic mutation that can make them resistant or even immune to HIV. This knowledge is used to develop modern treatments for the virus. Until now, it was unknown where, when, or why the mutation occurred. But by using advanced DNA technology, researchers have now solved this genetic mystery. “It turns out that the variant arose in one ...

KIST leads next-generation energy storage technology with development of supercapacitor that overcomes limitations

2025-05-09
A research team led by Dr. Bon-Cheol Ku and Dr. Seo Gyun Kim of the Carbon Composite Materials Research Center at the Korea Institute of Science and Technology (KIST) and Professor Yuanzhe Piao of Seoul National University (SNU) has developed a high-performance supercapacitor that is expected to become the next generation of energy storage devices. The technology developed by the researchers overcomes the limitations of existing supercapacitors by utilizing an innovative fiber structure composed of single-walled carbon nanotubes (CNTs) and the conductive ...

Urine, not water for efficient production of green hydrogen

2025-05-09
Researchers have developed two unique energy-efficient and cost-effective systems that use urea found in urine and wastewater to generate hydrogen. The unique systems reveal new pathways to economically generate ‘green’ hydrogen, a sustainable and renewable energy source, and the potential to remediate nitrogenous waste in aquatic environments. Typically, hydrogen is generated through the use of electrolysis to split water into oxygen and hydrogen. It is a promising technology to help address ...

Chip-scale polydimethylsiloxane acousto-optic phase modulator boosts higher-resolution plasmonic comb spectroscopy

2025-05-09
High-resolution optical spectroscopy is an essential tool in quantum optics, chemical reaction analysis, and precision metrology, as it enables detailed investigation of quantum states, energy levels, spin states, and vibrational modes in atoms and molecules. However, conventional diffraction grating-based spectrometers are limited by their large and complex optical configurations and face fundamental challenges in achieving sub-MHz spectral resolution. As an alternative, direct frequency comb spectroscopy (DFCS) based on frequency combs has gained attention due to its potential for compact, high-resolution spectral ...

Blood test for many cancers could potentially thwart progression to late stage in up to half of cases

2025-05-08
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early stage and amenable to treatment in up to half of cases, suggests a modelling study published in the open access journal BMJ Open. Incorporating the test, formally known as a multi-cancer early detection test, or MCED for short, either yearly or biennially, could therefore improve outcomes for patients by intercepting disease progression, ...

Women non-smokers still around 50% more likely than men to develop COPD

2025-05-08
Women’ are around 50% more likely than men to develop COPD, the umbrella term for chronic lung conditions, such as emphysema and bronchitis, even if they have never smoked or smoked much less than their male counterparts, suggests observational research, published in the open access journal BMJ Open Respiratory Research. The findings challenge the widely held belief that women’s increased vulnerability to cigarette smoke likely explains this disparity, conclude the researchers. Smoking is the principal cause of COPD. But despite significant falls in cigarette smoking over the past 50 years, it remains a leading cause of death in the USA, with the ...

AI tool uses face photos to estimate biological age and predict cancer outcomes

2025-05-08
Eyes may be the window to the soul, but a person’s biological age could be reflected in their facial characteristics. Investigators from Mass General Brigham developed a deep learning algorithm called FaceAge that uses a photo of a person’s face to predict biological age and survival outcomes for patients with cancer. They found that patients with cancer, on average, had a higher FaceAge than those without and appeared about five years older than their chronological age. Older FaceAge predictions were ...

North Korea’s illegal wildlife trade threatens endangered species

2025-05-08
The North Korean government engages in unsustainable and illegal wildlife trade, which includes species protected under its own laws and poses a threat to biodiversity recovery in the region, finds a groundbreaking new study by UCL researchers. The report, published in Biological Conservation, found that although North Korea has a regulatory system of protected areas and protected species, these are regularly breached by people hunting and trapping wild animals for personal consumption or black market trade, either domestically or for sale to buyers in China. Additionally, the North Korean state itself is implicated in, and actively profiting from, harvesting and trade of endangered ...

LAST 30 PRESS RELEASES:

ASU researchers to lead AAAS panel on water insecurity in the United States

ASU professor Anne Stone to present at AAAS Conference in Phoenix on ancient origins of modern disease

Proposals for exploring viruses and skin as the next experimental quantum frontiers share US$30,000 science award

ASU researchers showcase scalable tech solutions for older adults living alone with cognitive decline at AAAS 2026

Scientists identify smooth regional trends in fruit fly survival strategies

Antipathy toward snakes? Your parents likely talked you into that at an early age

Sylvester Cancer Tip Sheet for Feb. 2026

Online exposure to medical misinformation concentrated among older adults

Telehealth improves access to genetic services for adult survivors of childhood cancers

Outdated mortality benchmarks risk missing early signs of famine and delay recognizing mass starvation

Newly discovered bacterium converts carbon dioxide into chemicals using electricity

Flipping and reversing mini-proteins could improve disease treatment

Scientists reveal major hidden source of atmospheric nitrogen pollution in fragile lake basin

Biochar emerges as a powerful tool for soil carbon neutrality and climate mitigation

Tiny cell messengers show big promise for safer protein and gene delivery

AMS releases statement regarding the decision to rescind EPA’s 2009 Endangerment Finding

Parents’ alcohol and drug use influences their children’s consumption, research shows

Modular assembly of chiral nitrogen-bridged rings achieved by palladium-catalyzed diastereoselective and enantioselective cascade cyclization reactions

Promoting civic engagement

AMS Science Preview: Hurricane slowdown, school snow days

Deforestation in the Amazon raises the surface temperature by 3 °C during the dry season

Model more accurately maps the impact of frost on corn crops

How did humans develop sharp vision? Lab-grown retinas show likely answer

Sour grapes? Taste, experience of sour foods depends on individual consumer

At AAAS, professor Krystal Tsosie argues the future of science must be Indigenous-led

From the lab to the living room: Decoding Parkinson’s patients movements in the real world

Research advances in porous materials, as highlighted in the 2025 Nobel Prize in Chemistry

Sally C. Morton, executive vice president of ASU Knowledge Enterprise, presents a bold and practical framework for moving research from discovery to real-world impact

Biochemical parameters in patients with diabetic nephropathy versus individuals with diabetes alone, non-diabetic nephropathy, and healthy controls

Muscular strength and mortality in women ages 63 to 99

[Press-News.org] Self-assembly of a large metal-peptide capsid nanostructure through geometric control
New hollow dodecahedral shell demonstrates remarkable stability and potential for functionalization and encapsulating macromolecules