(Press-News.org)
A large-scale cohort study led by researchers from Tianjin University, Shenyang Medical College, Shengjing Hospital of China Medical University, and the Chinese University of Hong Kong has uncovered strong evidence that loneliness may independently increase the risk of hearing loss. The findings were published in Health Data Science on May 2, 2025.
Hearing loss is one of the most prevalent global health conditions, affecting more than 1.5 billion people. While physiological and behavioral risk factors are well-documented, the role of psychosocial factors such as loneliness has been underexplored. This study sought to determine whether loneliness is not just a consequence but also a contributing factor to hearing loss.
Using data from 490,865 participants in the UK Biobank, the researchers tracked individuals over a median period of 12.3 years. Loneliness was measured at baseline through a single-item self-report, and incident hearing loss was identified via electronic health records. Results showed that lonely individuals had a 24% higher risk of developing hearing loss compared to their non-lonely counterparts, even after adjusting for age, sex, socioeconomic status, health behaviors, comorbidities, ototoxic drug use, social isolation, depression, and genetic predisposition.
“We found that loneliness is associated with an increased risk of developing hearing loss, independent of other well-known risk factors,” said Yunlong Song, from the Institute of Applied Psychology at Tianjin University. “This suggests a potentially harmful feedback loop in which loneliness and hearing loss exacerbate one another.”
The association was especially pronounced for sensorineural hearing loss, a form linked to cochlear or neural damage, and was stronger in women than men. Interestingly, while genetic predisposition to hearing loss also increased overall risk, it did not modify the effect of loneliness, indicating loneliness acts through distinct pathways.
The authors propose multiple mechanisms to explain this relationship, including loneliness-related inflammation, elevated blood pressure, neuroendocrine stress responses, and associated chronic diseases and unhealthy behaviors. The findings remained robust across sensitivity analyses, including models excluding early cases and incorporating self-reported hearing data.
“Our next step is to investigate the behavioral, psychological, and physiological mechanisms that might explain how loneliness contributes to hearing loss,” said co-author Bin Yu. “Ultimately, we aim to conduct intervention studies to test whether alleviating loneliness can lower the risk of hearing loss.”
END
May 2025 — La Jolla, CA / Singapore — A new study published in Aging Cell demonstrates that artificial intelligence can be used not just to accelerate drug discovery, but to fundamentally transform how it’s done—by targeting the full complexity of biological aging.
In a collaboration between Scripps Research and Gero, a biotechnology company focused on aging, scientists developed a machine learning model trained to identify compounds that act across multiple biological pathways—a process known as polypharmacology. Instead of seeking a single “magic ...
Clinicians from the Johns Hopkins Kimmel Cancer Center and four other institutions have demonstrated that doctors can gain a wealth of knowledge about a patient’s cancer by using multiple laboratory techniques to study tumor tissue taken from needle biopsies of glioblastoma, a highly aggressive form of brain cancer.
The work, funded by Break Through Cancer and published in the April 28 issue of Nature Communications, has implications for additional cancer types.
Physicians currently limit collection of small ...
< Overview >
Researchers at Toyohashi University of Technology in Japan, in collaboration with the Institute of Translational Medicine and Biomedical Engineering (IMTIB) in Argentina and the Indian Institute of Technology Madras, have advanced the "PDMS SlipChip," a versatile microfluidic device. By using a low-viscosity silicone oil and fine-tuning the fabrication process, they've made the SlipChip more reliable for cell-based experiments and simpler for creating concentration gradients. This breakthrough tackles previous issues like channel clogging and potential ...
A study by Dartmouth researchers proposes a new theory about the origin of dark matter, the mysterious and invisible substance thought to give the universe its shape and structure.
The researchers report in Physical Review Letters that dark matter could have formed in the early life of the universe from the collision of high-energy massless particles that lost their zip and took on an incredible amount of mass immediately after pairing up, according to their mathematical models.
While hypothetical, dark matter is believed to exist based on observed gravitational effects that cannot be explained by visible matter. Scientists ...
"I'm stunned." says Per Ahlberg of Uppsala University, who coordinated the study; "A single track-bearing slab, which one person can lift, calls into question everything we thought we knew about when modern tetrapods evolved."
The story of the origin of tetrapods began with fishes leaving the water, and ended with the descendants of these first colonists on land diversifying into the ancestors of the modern amphibians and amniotes (the group that includes reptiles, birds and mammals). ...
Xiaowei Gu and Joshua Johansen at the RIKEN Center for Brain Science in Japan have discovered key circuitry in the rat brain that allows the learning of inferred emotions. The study reveals how the frontal part of the brain coordinates with the amygdala—a brain region important for simple forms of emotional learning—to make this higher-order emotional ability possible. Published in the scientific journal Nature on May 14, this breakthrough study is the first to show how the brain codes human-like internal models of emotion.
What are inferred emotions? Consider a child who often watches a wasp fly in and out of its nest in the woods near her house. One day the child ...
The human gut is home to trillions of microbes that not only aid in digestion but also play a key role in shaping our immune system. These microbes communicate with the body by releasing a range of molecules that influence how immune cells grow and function.
To maintain a healthy balance between host defense and microbial coexistence, the body deploys a variety of defense tools—such as mucus, antimicrobial proteins, antibodies, and complement proteins—to control microbial activity and fend off harmful invaders. But one mystery has lingered: Can our bodies selectively recognize and manage specific bacteria among this incredibly diverse microbial community?
In ...
Neuroscientists at the Sainsbury Wellcome Centre (SWC) at UCL have discovered that the brain uses a dual system for learning through trial and error. This is the first time a second learning system has been identified, which could help explain how habits are formed and provide a scientific basis for new strategies to address conditions related to habitual learning, such as addictions and compulsions. Published today in Nature, the study in mice could also have implications for developing therapeutics for Parkinson’s.
“Essentially, we have found a mechanism that we think is responsible for habits. Once you have developed a preference for a certain action, ...
A new scientific study identified taurine, which is made naturally in the body and consumed through some foods, as a key regulator of myeloid cancers such as leukemia, according to a paper published in the journal Nature.
The preclinical research shows that scientists are a step closer to finding new ways to target leukemia, which is one of the most aggressive blood cancers. The Wilmot Cancer Institute investigators at the University of Rochester were able to block the growth of leukemia in mouse models and in human leukemia cell samples by using genetic tools to prevent taurine from entering cancer ...
What: Researchers at the National Institutes of Health (NIH) have identified a series of changes in the architecture and cell composition of connective tissues of the breast, known as stromal tissue, that is associated with an increased risk of developing aggressive breast cancer among women with benign breast disease, and poorer rates of survival among women with invasive breast cancer. This process, which they call stromal disruption, could potentially be used as a biomarker to identify women with benign breast disease ...