PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Arginine supplementation curbs Alzheimer’s disease pathology in animal models

Researchers show that oral arginine reduces amyloid buildup and neuroinflammation, offering a safe, low-cost therapeutic approach for Alzheimer’s disease

2025-11-21
(Press-News.org)

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is one of the leading causes of dementia worldwide, and currently has no definitive cure. Although antibody-based therapies that target amyloid β (Aβ) have recently been developed, their clinical effectiveness remains limited. These treatments can be costly and cause immune-related side effects, highlighting the need for safer, affordable, and widely accessible approaches that can slow the progression of AD.

In a new study, made available online on October 30, 2025, in Neurochemistry International, researchers from Kindai University and collaborating institutions discovered that oral administration of arginine, a naturally occurring amino acid and safe chemical chaperone, effectively suppresses Aβ aggregation and its toxic effects in animal models of AD. The researchers emphasized that although arginine is available as an over-the-counter dietary supplement, the dosage and administration protocol employed in this study was optimized for research purposes and does not correspond to commercially available formulations.

The research team included Graduate Student Kanako Fujii and Professor Yoshitaka Nagai from the Department of Neurology, Kindai University Faculty of Medicine, Osaka, and Associate Professor Toshihide Takeuchi from the Life Science Research Institute, Kindai University, Osaka.

Using in vitro assays, the researchers first demonstrated that arginine can inhibit the formation of Aβ42 aggregates in a concentration-dependent manner. Building on these findings, the team evaluated oral arginine in two established AD models:

A Drosophila model, expressing Aβ42 with the Arctic mutation (E22G) An AppNL-G-F knock-in mouse model, carrying three familial AD mutations

In both models, arginine administration significantly reduced Aβ accumulation and alleviated Aβ-induced toxicity.

“Our study demonstrates that arginine can suppress Aβ aggregation both in vitro and in vivo,” explains Prof. Nagai. “What makes this finding exciting is that arginine is already known to be clinically safe and inexpensive, making it a highly promising candidate for repositioning as a therapeutic option for AD.”

In the mouse model, oral arginine significantly decreased amyloid plaque deposition and lowered insoluble Aβ42 levels in the brain. Moreover, arginine-treated mice showed improved behavioral performance and reduced expression of pro-inflammatory cytokine genes associated with neuroinflammation, one of the key pathological features of AD. These results suggest that arginine’s protective effects extend beyond aggregation inhibition to include broader neuroprotective and anti-inflammatory actions.

“Our findings open up new possibilities for developing arginine-based strategies for neurodegenerative diseases caused by protein misfolding and aggregation,” notes Prof. Nagai. “Given its excellent safety profile and low cost, arginine could be rapidly translated to clinical trials for Alzheimer’s and potentially other related disorders.”

This research underscores the potential of drug repositioning—repurposing existing, safe compounds for new therapeutic uses—as an efficient pathway toward accessible Alzheimer’s treatments. Because arginine is already used clinically in Japan and has demonstrated high safety and brain permeability, it may overcome several early barriers faced by conventional drug development.

The researchers note that further preclinical and clinical studies are needed to determine whether these therapeutic effects can be replicated in humans and to establish optimal dosing regimens. Nonetheless, the present findings provide compelling proof of concept that simple nutritional or pharmacological supplementation could mitigate amyloid pathology and improve neurological outcomes.

This study not only deepens our understanding of Aβ aggregation dynamics but also highlights a readily implementable and cost-effective strategy that could ultimately benefit the growing global population affected by AD.

 

***

 

Reference                     
DOI: 10.1016/j.neuint.2025.106082

 

About Kindai University
Kindai University was established in 1949 after the merger of Osaka Technical College (founded in 1925) and Osaka Science and Engineering University (founded in 1943). Over the past several decades, the university has transformed into a comprehensive educational organization with an ever-growing reputation. Kindai University has over 2,200 full-time faculty members, 6 campuses, and 18 research centers. As an academic institution offering a broad range of programs from across disciplines, Kindai University strives to impart practical education while nurturing intellectual and emotional capabilities. The university’s academic programs are fully accredited by Japan’s Ministry of Education, Culture, Sports, Science and Technology as well as by the National Institution for Academic Degrees and University Evaluation.

Website: https://www.kindai.ac.jp/english/

 

About Professor Yoshitaka Nagai from Kindai University
Professor Yoshitaka Nagai is a neurologist and Chair of the Department of Neurology at Kindai University Faculty of Medicine, Osaka, Japan. His research focuses on neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis, with an emphasis on protein misfolding and RNA-related mechanisms. He has received several awards, including honors from the Japanese Society of Neurochemistry and the Japanese Dementia Society, for his contributions to understanding and developing treatments for brain disorders.

 

Funding information
This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) (Grant No. 20H05927), Japan Society for the Promotion of Science (JSPS) (Grant Nos. 24H00630, 21H02840, 22H02792, and 25K02432), Japan Science and Technology Agency (JST) Super-Highway Program (SHW2023-03), and National Center of Neurology and Psychiatry.

END



ELSE PRESS RELEASES FROM THIS DATE:

Stick and Glue! Researchers at IOCB Prague introduce a new biomolecule-labeling method for more precise observation of cellular processes

2025-11-21
A team of researchers at IOCB Prague headed by Dr. Tomáš Slanina has developed a new method for labeling molecules with fluorescent dyes that surpasses existing approaches in both precision and stability. The new fluorescent label remains covalently bonded to its target molecule and does not fall apart even under demanding conditions inside living cells. This allows scientists to track labeled molecules over long periods with high reliability – an advantage for research in biology, chemistry, and medicine. The study was published in Angewandte Chemie International Edition. ...

Brain “stars” hold the power to preserve cognitive function in model of Alzheimer’s disease

2025-11-21
Researchers at Baylor College of Medicine have discovered a natural mechanism that clears existing amyloid plaques in the brains of mouse models of Alzheimer’s disease and preserves cognitive function. The mechanism involves recruiting brain cells known as astrocytes, star shaped cells in the brain, to remove the toxic amyloid plaques that build up in many Alzheimer’s disease brains. Increasing the production of Sox9, a key protein that regulates astrocyte functions during aging, triggered ...

New CAR T strategy targets most common form of heart disease

2025-11-21
PHILADELPHIA – A pioneering preclinical study has shown that CAR T cell therapy—a personalized form of immunotherapy used in cancer treatment—could be a highly effective tool against atherosclerosis, the condition where a build-up of plaque in the arteries reduces blood flow, leading to heart attacks and strokes. In tests in mice, the experimental CAR T cells blocked inflammation in arteries, preventing more than two-thirds of the plaque buildup seen in untreated controls. The research, led by scientists in the Perelman School of Medicine at the University of Pennsylvania, was published today in Circulation. “Our ...

Why some volcanoes don’t explode

2025-11-21
The explosiveness of a volcanic eruption depends on how many gas bubbles form in the magma – and when. Until now, it was thought that gas bubbles were formed primarily when the ambient pressure dropped while the magma was rising. Gases that were dissolved in the magma in lower strata – due to the higher pressure – escape when the pressure drops and form bubbles. The more bubbles there are in the magma, the lighter it becomes and the faster it rises. This can cause the magma to tear apart, leading to an explosive eruption.  This process can be likened to a bottle of champagne: while the bottle is closed and therefore pressurised, the carbon dioxide remains ...

New stem cell medium creates contracting canine heart muscle cells

2025-11-21
In research, induced pluripotent stem (iPS) cells are derived from skin, urine, or blood samples and developed into other cells, like heart tissue, that researchers want to study. Because of the similarities between certain dog and human diseases, canine iPS cells have potential uses  in regenerative medicine and drug discovery.  Research on iPS cells is challenging because the cells are extremely sensitive to culture conditions. Before they are developed into other cells, iPS cells are in an undifferentiated state. At this stage, the cells are grown in a culture medium that provides the essential nutrients, growth factors, and signaling molecules that they ...

Deep learning-assisted organogel pressure sensor for alphabet recognition and bio-mechanical motion monitoring

2025-11-21
As wearable electronics migrate toward real-time health monitoring and seamless human–machine interfaces, conventional hydrogels freeze, dry out and fracture under daily conditions. Now, a multidisciplinary team led by Prof. Sang-Jae Kim (Jeju National University) has unveiled a CoN-CNT/PVA/GLE organogel sensor that marries sub-zero toughness with AI-grade pattern recognition. The device delivers 5.75 kPa-1 sensitivity across 0–20 kPa, heals in 0.24 s, and classifies handwritten English letters at 98 % accuracy—offering a robust, bio-compatible platform for next-generation soft robotics ...

Efficient neutral nitrate-to-ammonia electrosynthesis using synergistic Ru-based nanoalloys on nitrogen-doped carbon

2025-11-21
As fertilizer demand rises and nitrate pollution spreads, turning waste NO₃⁻ into green NH₃ has become urgent. Now, researchers from Guizhou University, Hunan Agricultural University and Shanghai University, led by Professor Jili Yuan, Professor Wei Li and Dr Liang Wang, report a selective-etching route to RuM (M = Fe, Co, Ni, Cu) nanoalloys that deliver 100 % Faradaic efficiency for neutral ammonia electro-synthesis at only −0.1 V vs RHE—outperforming most catalysts reported to date. Why RuM Nanoalloys Matter    • Energy Efficiency: Alloying ...

Low-temperature electrolytes for lithium-ion batteries: Current challenges, development, and perspectives

2025-11-21
As electric vehicles, satellites and wearable electronics push into sub-zero environments, conventional lithium-ion batteries (LIBs) lose most of their energy and power, while lithium plating threatens safety. Now, researchers from Chang’an University and Queensland University of Technology, led by Professor Limin Geng, Professor Weijia Meng and Dr Jiaye Ye, have published a forward-looking review on low-temperature (LT) electrolytes that keep LIBs charging and discharging down to −80 °C. This work offers a systematic ...

Two-dimensional MXene-based advanced sensors for neuromorphic computing intelligent application

2025-11-21
As artificial-intelligence workloads explode, the energy cost and latency of shuttling data between discrete sensors, memory and processors have become critical bottlenecks. Now, researchers from the School of Integrated Circuits at Shandong University, led by Professor Jialin Meng and Professor Tianyu Wang, have published a forward-looking review on two-dimensional MXene materials that act simultaneously as ultra-sensitive sensors and neuromorphic synapses. This work charts a direct route toward self-powered, edge-intelligent systems that see, feel ...

UC Davis launches major study on language development in children with Down syndrome

2025-11-21
UC Davis researchers are leading a $5.5 million study to better understand how children with Down syndrome develop expressive communication — the skills used to share what we want, think or feel. Angela John Thurman, a professor in the Department of Psychiatry and Behavioral Sciences and the UC Davis MIND Institute, is leading the research. The five-year project is funded by a grant from the National Institutes of Health. “Most children with Down syndrome have delays in developing expressive communication,” ...

LAST 30 PRESS RELEASES:

Understanding sex-based differences and the role of bone morphogenetic protein signaling in Alzheimer’s disease

Breakthrough in thin-film electrolytes pushes solid oxide fuel cells forward

Clues from the past reveal the West Antarctic Ice Sheet’s vulnerability to warming

Collaborative study uncovers unknown causes of blindness

Inflammatory immune cells predict survival, relapse in multiple myeloma

New test shows which antibiotics actually work

Most Alzheimer’s cases linked to variants in a single gene

Finding the genome's blind spot

The secret room a giant virus creates inside its host amoeba

World’s vast plant knowledge not being fully exploited to tackle biodiversity and climate challenges, warn researchers

New study explains the link between long-term diabetes and vascular damage

Ocean temperatures reached another record high in 2025

Dynamically reconfigurable topological routing in nonlinear photonic systems

Crystallographic engineering enables fast low‑temperature ion transport of TiNb2O7 for cold‑region lithium‑ion batteries

Ultrafast sulfur redox dynamics enabled by a PPy@N‑TiO2 Z‑scheme heterojunction photoelectrode for photo‑assisted lithium–sulfur batteries

Optimized biochar use could cut China’s cropland nitrous oxide emissions by up to half

Neural progesterone receptors link ovulation and sexual receptivity in medaka

A new Japanese study investigates how tariff policies influence long-run economic growth

Mental trauma succeeds 1 in 7 dog related injuries, claims data suggest

Breastfeeding may lower mums’ later life depression/anxiety risks for up to 10 years after pregnancy

Study finds more than a quarter of adults worldwide could benefit from GLP-1 medications for weight loss

Hobbies don’t just improve personal lives, they can boost workplace creativity too

Study shows federal safety metric inappropriately penalizes hospitals for lifesaving stroke procedures

Improving sleep isn’t enough: researchers highlight daytime function as key to assessing insomnia treatments

Rice Brain Institute awards first seed grants to jump-start collaborative brain health research

Personalizing cancer treatments significantly improve outcome success

UW researchers analyzed which anthologized writers and books get checked out the most from Seattle Public Library

Study finds food waste compost less effective than potting mix alone

UCLA receives $7.3 million for wide-ranging cannabis research

Why this little-known birth control option deserves more attention

[Press-News.org] Arginine supplementation curbs Alzheimer’s disease pathology in animal models
Researchers show that oral arginine reduces amyloid buildup and neuroinflammation, offering a safe, low-cost therapeutic approach for Alzheimer’s disease