(Press-News.org) Vast, quasi-circular features on Venus’ surface may reveal that the planet has ongoing tectonics, according to new research based on data gathered more than 30 years ago by NASA’s Magellan mission. On Earth, the planet’s surface is continually renewed by the constant shifting and recycling of massive sections of crust, called tectonic plates, that float atop a viscous interior. Venus doesn’t have tectonic plates, but its surface is still being deformed by molten material from below.
Seeking to better understand the underlying processes driving these deformations, the researchers studied a type of feature called a corona. Ranging in size from dozens to hundreds of miles across, a corona is most often thought to be the location where a plume of hot, buoyant material from the planet’s mantle rises, pushing against the lithosphere above. (The lithosphere includes the planet’s crust and the uppermost part of its mantle.) These structures are usually oval, with a concentric fracture system surrounding them. Hundreds of coronae are known to exist on Venus.
Published in the journal Science Advances, the new study details newly discovered signs of activity at or beneath the surface shaping many of Venus’ coronae, features that may also provide a unique window into Earth’s past. The researchers found the evidence of this tectonic activity within data from NASA’s Magellan mission, which orbited Venus in the 1990s and gathered the most detailed gravity and topography data on the planet currently available.
“Coronae are not found on Earth today; however, they may have existed when our planet was young and before plate tectonics had been established,” said the study’s lead author, Gael Cascioli, assistant research scientist at the University of Maryland, Baltimore County, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “By combining gravity and topography data, this research has provided a new and important insight into the possible subsurface processes currently shaping the surface of Venus.”
As members of NASA’s forthcoming VERITAS (Venus Emissivity, Radio science, InSAR, Topography, and Spectroscopy) mission, Cascioli and his team are particularly interested in the high-resolution gravity data the spacecraft will provide. Study coauthor Erwan Mazarico, also at Goddard, will co-lead the VERITAS gravity experiment when the mission launches no earlier than 2031.
Mystery Coronae
Managed by NASA’s Jet Propulsion Laboratory in Southern California, Magellan used its radar system to see through Venus’ thick atmosphere and map the topography of its mountains and plains. Of the geological features the spacecraft mapped, coronae were perhaps the most enigmatic: It wasn’t clear how they formed. In the years since, scientists have found many coronae in locations where the planet’s lithosphere is thin and heat flow is high.
“Coronae are abundant on Venus. They are very large features, and people have proposed different theories over the years as to how they formed,” said coauthor Anna Gülcher, Earth and planetary scientist at the University of Bern in Switzerland. “The most exciting thing for our study is that we can now say there are most likely various and ongoing active processes driving their formation. We believe these same processes may have occurred early in Earth’s history.”
The researchers developed sophisticated 3D geodynamic models that demonstrate various formation scenarios for plume-induced coronae and compared them with the combined gravity and topography data from Magellan. The gravity data proved crucial in helping the researchers detect less dense, hot, and buoyant plumes under the surface — information that couldn’t be discerned from topography data alone. Of the 75 coronae studied, 52 appear to have buoyant mantle material beneath them that is likely driving tectonic processes.
One key process is subduction: On Earth, it happens when the edge of one tectonic plate is driven beneath the adjacent plate. Friction between the plates can generate earthquakes, and as the old rocky material dives into the hot mantle, the rock melts and is recycled back to the surface via volcanic vents.
On Venus, a different kind of subduction is thought to occur around the perimeter of some coronae. In this scenario, as a buoyant plume of hot rock in the mantle pushes upward into the lithosphere, surface material rises and spreads outward, colliding with surrounding surface material and pushing that material downward into the mantle.
Another tectonic process known as lithospheric dripping could also be present, where dense accumulations of comparatively cool material sink from the lithosphere into the hot mantle. The researchers also identify several places where a third process may be taking place: A plume of molten rock beneath a thicker part of the lithosphere potentially drives volcanism above it.
Deciphering Venus
This work marks the most recent instance of scientists returning to Magellan data to find that Venus exhibits geologic processes that are more Earth-like than originally thought. Recently, researchers were able to spot erupting volcanoes, including vast lava flows that vented from Maat Mons, Sif Mons, and Eistla Regio in radar images from the orbiter.
While those images provided direct evidence of volcanic action, the authors of the new study will need sharper resolution to draw a complete picture about the tectonic processes driving corona formation. “The VERITAS gravity maps of Venus will boost the resolution by at least a factor of two to four, depending on location — a level of detail that could revolutionize our understanding of Venus’ geology and implications for early Earth,” said study coauthor Suzanne Smrekar, a planetary scientist at JPL and principal investigator for VERITAS.
Managed by JPL, VERITAS will use a synthetic aperture radar to create 3D global maps and a near-infrared spectrometer to figure out what the surface of Venus is made of. Using its radio tracking system, VERITAS will also measure the planet’s gravitational field to determine the structure of Venus’ interior. All of these instruments will help pinpoint areas of activity on the surface.
For more information about NASA’s VERITAS mission, visit:
https://science.nasa.gov/mission/veritas/
***This press release was provided by NASA/JPL.***
END
Injecting medicine into the amniotic fluid staves off progression of spinal muscular atrophy in utero.
Evidence is mounting that clinicians can treat serious genetic disorders prenatally by injecting medicine into the amniotic fluid, thus preventing damage that begins in utero.
A UC San Francisco-led study found that delivering medicine for spinal muscular atrophy (SMA) via the amniotic fluid was safe, and it helped prevent damage to nerve cells in the spinal cord, a part of the central nervous system that is responsible for movement. One experiment was done in mice with SMA — a neurodegenerative disease that causes muscular weakness, atrophy, ...
A multidisciplinary team of researchers from the USC School of Advanced Computing and the Keck School of Medicine, working alongside experts from the Microsoft AI for Good Lab, Amref Health Africa, and Kenya’s Ministry of Health, has developed an artificial intelligence (AI) model that can predict acute child malnutrition in Kenya up to six months in advance.
The tool offers governments and humanitarian organizations critical lead time to deliver life-saving food, health care, and supplies to at-risk areas.The machine learning model outperforms traditional approaches by integrating clinical data from more than 17,000 Kenyan health facilities with satellite data on crop ...
From tiny pellets to creepy wave-battered baby dolls, the Texas coast is a notable hot spot for plastic debris.
But when researchers from The University of Texas at Austin went searching for microplastics in sediments pulled from the bottom of Matagorda Bay and its surrounding inlets, they didn’t find much.
Most of their samples contained only tens to hundreds of microplastic particles for each kilogram of sediment. This is hundreds to thousands of times less than other bayside environments around the world.
Their findings, which were published in Environmental Science & Technology, suggest that rather than settling at the bottom ...
A large-scale cohort study led by researchers from Tianjin University, Shenyang Medical College, Shengjing Hospital of China Medical University, and the Chinese University of Hong Kong has uncovered strong evidence that loneliness may independently increase the risk of hearing loss. The findings were published in Health Data Science on May 2, 2025.
Hearing loss is one of the most prevalent global health conditions, affecting more than 1.5 billion people. While physiological and behavioral risk factors are well-documented, the role of psychosocial factors such as loneliness has been underexplored. This study sought to determine ...
May 2025 — La Jolla, CA / Singapore — A new study published in Aging Cell demonstrates that artificial intelligence can be used not just to accelerate drug discovery, but to fundamentally transform how it’s done—by targeting the full complexity of biological aging.
In a collaboration between Scripps Research and Gero, a biotechnology company focused on aging, scientists developed a machine learning model trained to identify compounds that act across multiple biological pathways—a process known as polypharmacology. Instead of seeking a single “magic ...
Clinicians from the Johns Hopkins Kimmel Cancer Center and four other institutions have demonstrated that doctors can gain a wealth of knowledge about a patient’s cancer by using multiple laboratory techniques to study tumor tissue taken from needle biopsies of glioblastoma, a highly aggressive form of brain cancer.
The work, funded by Break Through Cancer and published in the April 28 issue of Nature Communications, has implications for additional cancer types.
Physicians currently limit collection of small ...
< Overview >
Researchers at Toyohashi University of Technology in Japan, in collaboration with the Institute of Translational Medicine and Biomedical Engineering (IMTIB) in Argentina and the Indian Institute of Technology Madras, have advanced the "PDMS SlipChip," a versatile microfluidic device. By using a low-viscosity silicone oil and fine-tuning the fabrication process, they've made the SlipChip more reliable for cell-based experiments and simpler for creating concentration gradients. This breakthrough tackles previous issues like channel clogging and potential ...
A study by Dartmouth researchers proposes a new theory about the origin of dark matter, the mysterious and invisible substance thought to give the universe its shape and structure.
The researchers report in Physical Review Letters that dark matter could have formed in the early life of the universe from the collision of high-energy massless particles that lost their zip and took on an incredible amount of mass immediately after pairing up, according to their mathematical models.
While hypothetical, dark matter is believed to exist based on observed gravitational effects that cannot be explained by visible matter. Scientists ...
"I'm stunned." says Per Ahlberg of Uppsala University, who coordinated the study; "A single track-bearing slab, which one person can lift, calls into question everything we thought we knew about when modern tetrapods evolved."
The story of the origin of tetrapods began with fishes leaving the water, and ended with the descendants of these first colonists on land diversifying into the ancestors of the modern amphibians and amniotes (the group that includes reptiles, birds and mammals). ...
Xiaowei Gu and Joshua Johansen at the RIKEN Center for Brain Science in Japan have discovered key circuitry in the rat brain that allows the learning of inferred emotions. The study reveals how the frontal part of the brain coordinates with the amygdala—a brain region important for simple forms of emotional learning—to make this higher-order emotional ability possible. Published in the scientific journal Nature on May 14, this breakthrough study is the first to show how the brain codes human-like internal models of emotion.
What are inferred emotions? Consider a child who often watches a wasp fly in and out of its nest in the woods near her house. One day the child ...