(Press-News.org) COLUMBUS, Ohio – Ohio State University researchers recently tested the merits of two new dishware sanitizers, and found them more effective at removing bacteria from restaurant dishes than traditional sanitizers.
Melvin Pascall, co-author of the study and associate professor of food science and technology at Ohio State, said that the two new sanitizers reflect the industry's recent efforts to develop more effective germ killers that are also environmentally friendly.
The two sanitizers – one carrying the name brand PROSAN® and the other called neutral electrolyzed oxidizing water – not only proved more effective, but they also contained fewer toxic chemicals.
Pascall and his colleague's research can be found in the January 2011 issue of the journal Food Control.
Traditional sanitizers used by restaurants contain chemicals found in bleach, which can corrode dishware, damage the environment, and irritate or burn the skin, Pascall explained. Such sanitizers also lose their effectiveness with each additional washing cycle. This means that the killing agents within the sanitizers kill fewer amounts of harmful bacteria with each rinse.
E. coli outbreaks have been on the decline since 2002, but food is still the primary means for food borne illness transmission. The Centers for Disease Control and Prevention (CDC) estimated that 28 percent of food borne outbreaks between 1982 and 2002 originated from restaurants or other public food establishments.
Other statistics from the CDC show that approximately 5,000 people die from food borne illness each year while 325,000 are hospitalized for it.
Pascall suspects that this high incidence of illnesses could be related to the large number of patrons who eat at food service establishments in the United States.
In 2009, the National Restaurant Association reported that on a regular day more than 130 million people within the United States will eat at a public food establishment.
"Reducing the level of food borne illness within the restaurants involves serving safe, high-quality meals, but it also requires utensils and dishware to be disease-free," said Pascall.
He and his colleagues decided to compare the effectiveness of four different sanitizers by contaminating samples of milk and cream cheese with the highly infectious bacteria E. coli, and Listeria innocua. They chose four sanitizers: PROSAN®, a neutral electrolyzed oxidizing water, an ammonia compound, and sodium hypochlorite.
The neutral electrolyzed oxidizing water contained a bacteria-killing agent called hypochlorous acid, and it had an electrical potential different from that of tap water. The combined action of these two agents was responsible for the microbial reduction obtained during the study. One good point about using this water to clean dishes is that it has a neutral pH range of 6.5 to 7.5. A neutral pH means the sanitizer will not corrode dishes as much as highly acidic or alkaline sanitizers, including household bleach.
The researchers used three different types of dishware, plastic trays, ceramic plates, and glass cups. After covering the dishware with the infected milk or cream cheese, they let the food air dry for one hour before washing them.
"We wanted to simulate a restaurant atmosphere, so we allowed the food to cake onto the dishware for roughly the time it might in an actual restaurant," said Pascall.
The research team washed the dishes manually and by machine. Results indicated that the dishes washed by machine have consistently smaller amounts of the harmful bacteria on them, regardless of the sanitizers used.
"The FDA Food Code states that the amount of bacteria on a surface needs to be at least 100,000 times less after washing compared to before washing in order for it to be considered clean," explained Pascall. "This is called a 5-log reduction."
Pascall and colleagues tested multiple dirty loads with the same batch of sanitizer to see how many loads they could wash and still have a 5-log reduction of bacteria. "For both types of bacteria, the electrolyzed water and PROSAN® could wash more loads clean than the ammonia compound and the sodium hypochlorite," said Pascall. "Between the electrolyzed water and the PROSAN®, they were equally as effective except for cleaning ceramic plates, where the electrolyzed water was slightly more effective," he continued.
When the researchers were washing loads of glass dishes, the electrolyzed water and the PROSAN® sanitizers lasted 19 washing cycles, whereas the ammonia compound and the sodium hyplochlorite were only as effective over 17 washing cycles.
"Longer lasting sanitizers could be more cost effective for restaurants because they would not have to use nearly as much sanitizing solution as they currently do," said Pascall. "We cannot provide an estimate comparing the cost per volume between the four sanitizers, however."
The electrolyzed water was produced in the lab. "Following the upfront cost of the machine used to make the electrolyzed water, this method of sanitization could be extremely cost effective and convenient. The machine only requires salt water to produce the sanitizer, and we made it in the lab shortly before we used it," Pascall added.
INFORMATION:
Their research was solely funded by the Center for Innovative Food Technology. Microcide, Inc., the company that created PROSAN®, donates to the Center for Innovative Food Technology. The electrolyzed water generator was provided by Trustwater Inc. in Tipperary, Ireland.
Ohio State research colleagues include Gerald Sigua, Yoon-Hee Lee, Jaesung Lee, and Ken Lee. Sigua has since graduated, Yoon-Hee Lee and Jaesung Lee are research associates, and Ken Lee is a professor of food science and technology and director of Ohio State's Center for Food Safety and AgSecurity.
Contact: Melvin Pascall (614) 292-6281; pascall.1@osu.edu
Media Contact: Pam Gorder, (614) 292-9475; Gorder.1@osu.edu
Written by Jessica Orwig.
END
In regenerative medicine, large supplies of safe and reliable human embryonic stem (hES) cells are needed for implantation into patients, but the field has faced challenges in developing cultures that can consistently grow and maintain clinical-grade stem cells.
Standard culture systems use mouse "feeder" cells and media containing bovine sera to cultivate and maintain hES cells, but such animal product–based media can contaminate the cells. And because of difficulties in precise quality control, each batch of the medium can introduce new and unwanted variations.
Now, ...
COLUMBUS, Ohio -- An Ohio State University mathematician and his colleagues are finding ways to tell the difference between healthy cells and abnormal cells, such as cancer cells, based on the way the cells look and move.
They are creating mathematical equations that describe the shape and motion of single cells for laboratory analysis.
Though this research is in its early stages, it represents an entirely new way of identifying cell abnormalities, including cancer. It could one day be useful in gauging future stages of a disease -- for example, by detecting whether ...
AURORA, Colo. (Jan. 25, 2011) – A new study led by researchers at the Children's Outcomes Research (COR) Program at The Children's Hospital and Colorado Health Outcomes Program (COHO) at the University of Colorado School of Medicine explores the barriers, facilitators and alternative approaches to providers sending reminder notices for immunization using a statewide immunization registry. Reminder or recall messages, usually in the form of postcards, letters, or phone calls, have long been regarded as an effective way to increase immunization rates within primary care ...
COLUMBIA, Mo. – One of the first studies published from the University of Missouri Brain Imaging Center (BIC) gives researchers insight into the brain and memory and may provide researchers clues to treating a variety of debilitating disorders.
Nelson Cowan, director of the BIC and Curator's Professor in the Department of Psychological Sciences, used the BIC's magnetic resonance imaging (MRI) to produce graphics that depict the structure and function of the brain during various mental tasks in an effort to understand abstract working memory. People use their abstract ...
DURHAM, NC – Duke University bioengineers have developed a new method for rapidly producing an almost unlimited variety of man-made DNA sequences.
These novel sequences of recombinant DNA are used to produce repetitive proteins to create new types of drugs and bioengineered tissues. Current methods for producing these DNA sequences are slow or not robust, the researchers said, which has hindered the development of these increasingly important new classes of protein-based polymers.
Researchers have already demonstrated that when a large protective macromolecule – known ...
Surgery has not been an option in the past for children with ACL tears because of the possible damage to the growth plate that can cause serious problems later in life.
With this new technology, surgeons can actually see from one point to the other on either side of the knee, and can safely position the tunnels where they will place the new ligament.
John Xerogeanes, MD, chief of the Emory Sports Medicine Center, and colleagues in the laboratory of Allen R. Tannenbaum, PhD, professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and ...
WASHINGTON, DC, January 25, 2011 – The tiger reserves of Asia could support more than 10,000 wild tigers – three times the current number – if they are managed as large-scale landscapes that allow for connectivity between core breeding sites, a new paper from some of the world's leading conservation scientists finds. The study, co-authored by World Wildlife Fund (WWF) scientists, is the first assessment of the political commitment made by all 13 tiger range countries at November's historic tiger summit to double the tiger population across Asia by 2022.
"A Landscape-Based ...
VIDEO:
Jerry Nick, M.D., associate professor of medicine at National Jewish Health, discusses recent research on biofilms, bacterial infections and contact lenses.
Click here for more information.
Researchers at National Jewish Health and the University of Texas Southwestern Medical Center have discovered a new method to fight bacterial infections associated with contact lenses. The method may also have applications for bacterial infections associated with severe burns and ...
A study by researchers at Washington University School of Medicine in St. Louis has raised safety concerns about an investigational approach to treating cancer.
The strategy takes aim at a key signaling pathway, called Notch, involved in forming new blood vessels that feed tumor growth. When researchers targeted the Notch1 signaling pathway in mice, the animals developed vascular tumors, primarily in the liver, which led to massive hemorrhages that caused their death.
Their findings are reported online Jan. 25 in the Journal of Clinical Investigation and will appear ...
New Rochelle, NY, January 25, 2011—Give caffeine to cells engineered to produce viruses used for gene therapy and the cells can generate 3- to 8-times more virus, according to a paper published in Human Gene Therapy, a peer-reviewed journal published by Mary Ann Liebert, Inc. (www.liebertpub.com). The paper is available free online at www.liebertpub.com/hum
This simple and inexpensive strategy for increasing lentivirus production was developed by Brian Ellis, Patrick Ryan Potts, and Matthew Porteus, University of Texas Southwestern Medical Center, Dallas. In their paper, ...