Assembly instructions for enzymes
Universal rules can help to design an optimal enzyme from scratch
2025-05-23
(Press-News.org)
In biology, enzymes have evolved over millions of years to drive chemical reactions. Scientists from the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) now derived universal rules to enable the de novo design of optimal enzymes. As an example, they considered the enzymatic reaction of breaking a dimer into two monomer molecules. Considering the geometry of such an enzyme-substrate-complex, they identified three golden rules that should be considered to build a functional enzyme.
First, the interface of both enzyme and molecule should be located at their respective smaller end. This way, a strong coupling between both of them can be achieved. For the same reason, the conformational change in the enzyme should not be smaller than in the reaction. Finally, the conformational change of the enzyme has to take place fast enough to maximize the chemical driving force of the reaction.
“We built our research on two main pillars,” Ramin Golestanian, director of MPI-DS describes the approach. “Conservation of momentum and coupling between the reaction coordinates,” he continues. Thus, the researchers expanded the view of a classical 2-dimensional reaction coordinate. Typically, models for enzymatic reactions define an energy barrier that has to be overcome in order for the reaction to take place.
“As in our model we also consider the enzyme dynamics and coupling, we go beyond this existing concept, considering two reaction coordinates,” say Michalis Chatzittofi, first author of the study. “Instead of overcoming an energy barrier, one can now imagine alternative ways to bypass it by taking alternative routes,” he concludes.
These results provide a new basis for the design of molecular machines, avoiding the tedious and technically challenging approach to simulate the dynamics of each atom individually.
END
ELSE PRESS RELEASES FROM THIS DATE:
2025-05-23
Jonathan Ajo-Franklin, a leading mind in applied geophysics and Trustee Professor of Earth, Environmental and Planetary Sciences at Rice University, has been awarded the 2025 Reginald Fessenden Award by the Society of Exploration Geophysicists. The honor recognizes a “specific technical contribution to exploration geophysics” that represents a major scientific or conceptual advancement — a distinction that places Ajo-Franklin among the most influential innovators in the field.
Ajo-Franklin is internationally recognized for ...
2025-05-23
Q: How would you summarize your study for a lay audience?
Our study investigated the role of astrocytes, an abundant cell type in the brain, in regulating an immune response against glioblastoma (GBM)—a highly aggressive brain cancer. We found a subset of astrocytes that limits the immune response and can be targeted with therapeutics.
Q: What question were you investigating?
GBM is a brain cancer that has remained untreatable for decades. Immunotherapies that have worked in other cancers are ineffective in GBM, potentially due to the local suppression of immune responses in the tumor microenvironment. Astrocytes are abundant ...
2025-05-23
HOUSTON – (May 23, 2025) – More than ten years ago, researchers at Rice University led by materials scientist Boris Yakobson predicted that boron atoms would cling too tightly to copper to form borophene, a flexible, metallic two-dimensional material with potential across electronics, energy and catalysis. Now, new research shows that prediction holds up, but not in the way anyone expected.
Unlike systems such as graphene on copper, where atoms may diffuse into the substrate without forming a distinct alloy, the ...
2025-05-23
Flowers grow stems, leaves and petals in a perfect pattern again and again. A new Cornell study shows that even in this precise, patterned formation in plants, gene activity inside individual cells is far more chaotic than it appears from the outside.
This finding has important implications for plant engineering, where scientists design artificial gene switches to control growth or behavior. Understanding how plants manage genetic “noise” could also inform research in other fields, from synthetic ...
2025-05-23
Q: How would you summarize your study for a lay audience?
Given the rise in brain-based conditions and the growing development and investment in neurotechnologies to target them, it is important to understand how the public views these interventions and whether they would be willing to use them. To explore this, we conducted a survey of over 1,000 U.S. adults to examine perceptions of four neurotechnologies designed to treat severe mood, memory, or motor symptoms.
Q: What question were you investigating?
One of the goals of the recently created Neurotech Justice Accelerator at Mass General Brigham (NJAM), a Dana Center for Neuroscience & Society, is to better ...
2025-05-23
NEW ORLEANS, May 23, 2025 – When children are dropped off at a school or day care for the first time, there can be a lot of feelings and sometimes meltdowns caused by being separated from parents, meeting new people, and hearing new noises. Could the architecture of the room help to soothe at least some of the children’s concerns?
“Classrooms without any sound absorption are the majority in Japan,” said Ikuri Matsuoka, a master’s student at Kumamoto University in Japan. “My motivation was to make people aware of the importance of acoustics in classrooms because in Japan, there are no standards ...
2025-05-23
Eight times more American young adults now take medication to protect them from HIV than a decade ago, a new study finds.
But even with this positive news about increasing use of pre-exposure prophylaxis or PrEP, the study also suggests that health care providers and public health agencies could do more to promote consistent use of these medications.
The new study, done by a team at the University of Michigan Medical School, uses national pharmacy data to look at prescriptions for oral PrEP from 2016 to 2023 among people ages 18 to 25. It’s published in the Journal of General Internal Medicine.
At the start of the study period, 26 of every 100,000 U.S. young ...
2025-05-23
Where did the moon’s magnetism go? Scientists have puzzled over this question for decades, ever since orbiting spacecraft picked up signs of a high magnetic field in lunar surface rocks. The moon itself has no inherent magnetism today.
Now, MIT scientists may have solved the mystery. They propose that a combination of an ancient, weak magnetic field and a large, plasma-generating impact may have temporarily created a strong magnetic field, concentrated on the far side of the moon.
In a study appearing in the journal Science Advances, the researchers show through detailed simulations that ...
2025-05-23
Much of the world’s lithium occurs in salty waters with fundamentally different chemistry than other naturally saline waters like the ocean, according to a study published on May 23 in Science Advances. The finding has implications for lithium mining technologies and wastewater assessment and management.
Lithium is a critical mineral in the renewable energy sector. About 40% of global lithium production comes from large salt pans, called salars, in the central Andes Mountains in South America and the Tibetan Plateau ...
2025-05-23
Researchers from Nagoya City University, Tohoku University, and other institutions have used numerical simulations to replicate how a peculiar mineral texture called barred olivine forms inside chondrules—millimeter-sized spherical particles found in meteorites. These chondrules are considered time capsules from the early solar system, and barred olivine is a rare mineral texture not seen in Earth rocks.
Associate Professor Hitoshi Miura of Nagoya City University and the team was the first to reproduce this texture using numerical simulations and ...
LAST 30 PRESS RELEASES:
[Press-News.org] Assembly instructions for enzymes
Universal rules can help to design an optimal enzyme from scratch