PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Open problems: Cracking cell complexity with collective intelligence

2025-07-07
(Press-News.org) Researchers from more than 50 international institutions have launched Open Problems (https://openproblems.bio), a collaborative open-source platform to benchmark, improve, and run competitions for computational methods in single-cell genomics. Co-led by Helmholtz Munich and Yale University, the initiative aims to standardize evaluations, foster reproducibility, and accelerate progress towards open challenges in this fast-moving field.

A Common Language for a Complex Field

Single-cell genomics allows scientists to analyze individual cells at unprecedented resolution, revealing how they function, interact, and contribute to health and disease. But as the field has grown, so has the number of computational tools – now numbering in the thousands – designed to process and interpret this complex data. This rapid growth presents a major challenge: how can researchers identify the most suitable tool, or determine the best combination of processing steps to achieve a specific analytical goal?  Many tools are specialized, and evaluating their performance is challenging due to the limited availability of datasets with known, accurate outcomes (so-called ground truth). As a result, researchers often turn to large-scale benchmarking studies. However, these studies can be inconsistent, quickly become outdated, and often make comparisons difficult to interpret – making it challenging to identify the best method for a given task.

 “We need a common language to measure what works – and what doesn’t – that can stand the test of time,” says Prof. Fabian Theis, Director of the Computational Health Center at Helmholtz Munich and Professor at the Technical University of Munich. “With Open Problems, we’re introducing a reproducible, living, and transparent framework to guide tool development and evaluation – one that the community can actively shape and use.”

Transparent, Reproducible, and Community-Driven

Open Problems currently includes 81 public datasets and tests 171 methods across 12 core tasks in single-cell analysis. Each method is evaluated using a suite of metrics – quantitative measures that show how well a method performs on a specific task. These metrics include accuracy, scalability, and robustness, among others, and are chosen based on the goals of each task. In total, 37 different metrics are used across the platform, with each task using the most relevant ones.

All evaluations run automatically in the cloud and follow standardized procedures to ensure the results are fully reproducible. Researchers can see how each method performs, explore the underlying code, and suggest improvements.  To remain relevant and impactful over the long term, the platform is designed to be open to contributions: scientists can propose new tasks, add their own methods, join regular community calls, and take part in collaborative hackathons to help shape the future of the project.

Real-World Benefits

By comparing tools side by side, Open Problems helps researchers identify the most effective methods for their specific scientific questions and often challenges established assumptions in the process. As Dr. Smita Krishnaswamy, Associate Professor of Genetics and of Computer Science at the Yale School of Medicine, explains: “We found that looking at overall patterns of gene activity gives more accurate results than focusing on individual genes when studying how cells communicate. And for some tasks, like identifying cell types across different datasets, a simple statistical model can actually outperform complex AI methods, making the analysis both faster and more efficient for many researchers.”

The platform also powers major machine learning competitions, including the NeurIPS multimodal integration challenges. These global contests bring together experts in biology and artificial intelligence to solve real-world problems using common datasets and evaluation standards.

“Open Problems lowers the barrier for AI researchers outside biology to contribute to genomics,” says Dr. Malte Lücken, who co-led the project. “It’s a blueprint for interdisciplinary innovation.”

All code and results are openly available under a CC-BY licence at github.com/openproblems-bio/openproblems.

 

Original Publication

Lücken et al., 2025: Defining and benchmarking open problems in single-cell analysis. Nature Biotechnology. DOI: 10.1038/s41587-025-02694-w

 

About the Researchers 

Prof. Fabian Theis, Head of the Computational Health Center and director of the Institute of Computational Biology at Helmholtz Munich; Professor of Mathematical Modelling of Biological Systems at the Technical University Munich (TUM)

Dr. Smita Krishnaswamy, Associate Professor of Genetics and of Computer Science at the Yale School of Medicine

Dr. Malte Lücken, Group leader at the Institute of Computational Biology and the Institute of Lung Health & Immunity at Helmholtz Munich

 

About Helmholtz Munich

Helmholtz Munich is a leading biomedical research center. Its mission is to develop breakthrough solutions for better health in a rapidly changing world. Interdisciplinary research teams focus on environmentally triggered diseases, especially the therapy and prevention of diabetes, obesity, allergies, and chronic lung diseases. With the power of artificial intelligence and bioengineering, researchers accelerate the translation to patients. Helmholtz Munich has around 2,500 employees and is headquartered in Munich/Neuherberg. It is a member of the Helmholtz Association, with more than 43,000 employees and 18 research centers the largest scientific organization in Germany. More about Helmholtz Munich (Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH): www.helmholtz-munich.de/en 

END



ELSE PRESS RELEASES FROM THIS DATE:

International Gemini Observatory and SOAR discover surprising link between fast X-ray transients and the explosive death of massive stars

2025-07-07
Since their first detection, powerful bursts of X-rays from distant galaxies, known as fast X-ray transients (FXTs), have mystified astronomers. FXTs have historically been elusive events, occurring at vast distances away from Earth and only lasting seconds to hours. Einstein Probe (EP), launched in 2024, is dedicated to observing transient events in the X-ray and is changing the game for astronomers looking to understand the origin of these exotic events. In January 2025 EP alerted astronomers to the nearest FXT known at the time, named EP 250108a. Its proximity to Earth (2.8 billion light-years away) ...

At the computer for the lecture or in the lecture hall? It depends!

2025-07-07
During the coronavirus pandemic, german universities had to act quickly: Lectures and seminars had to be offered online via Zoom. After the pandemic-related lockdowns, many lecturers introduced synchronous hybrid teaching/learning settings. These are courses in which students can take part either on site in the seminar room or online at the same time. Students are therefore faced with the decision every session as to whether they want to take part in the course online or on site. Three researchers from the Professorship of Adult Education/Continuing Education at the Institute of Education at Julius-Maximilians-Universität Würzburg (JMU) have investigated the factors ...

A general framework for airfoil flow field reconstruction based on transformer-guided diffusion models

2025-07-07
High-resolution flow field data are essential for accurately evaluating the aerodynamic performance of aircraft. However, acquiring such data via large-scale numerical simulations or wind tunnel experiments is highly resource-intensive. Flow field super-resolution techniques aim to reconstruct high-resolution information from low-resolution data, significantly improving data acquisition efficiency. With the rapid advancement of artificial intelligence, especially deep learning, neural network-based super-resolution methods have been widely adopted for flow field reconstruction. Nonetheless, these ...

A rapidly structured aircraft concept design method based on generative artificial intelligence

2025-07-07
The conceptual design stage is a key step in aircraft development, laying the foundation for performance, efficiency and innovation. Traditionally, this process relies heavily on experienced designers to iterate designs based on design theory, design experience, and engineering calculations, which places high demands on designers' design experience and professional skills. With the continuous improvement of aircraft design requirements and the continuous expansion of application scenarios, it is necessary to explore new conceptual design methods to free designers from a large amount of low-value, highly repetitive, and experience-dependent ...

Breakthrough in artificial blood production

2025-07-07
Scientists have been working on the artificial production of blood for several decades. Now, researchers from the University of Konstanz and Queen Mary University of London have taken an important step closer to that goal with a new discovery. Roughly 15,000 units of blood are needed daily in Germany, most of which currently come from donations. Research into developing alternative sources, such as large-scale artificial blood production, has been ongoing for decades but is still far from reaching its widespread utility. The main challenge ...

Advancements in vortex particle method enable stable simulation of high Reynolds number flows and shear turbulence

2025-07-07
The Vortex Particle Method (VPM), a meshless vortex flow simulation approach, is gaining traction for its efficient simulation of unsteady vortex wakes evolution that is shed by aircrafts, rotors and wind turbines. It outperforms traditional grid-based CFD methods with faster computation, lower dissipation, and easier satisfaction of the CFL stability condition. However, traditional VPM has huge challenge on accurately simulating these complex flows, due to its poor numerical stability, which is compromised by factors such ...

New insights into divergent nitrogen fixation in subtropical forests

2025-07-07
Nitrogen fixation is a critical ecological process that converts atmospheric nitrogen into bioavailable forms, essential for plant growth and carbon sequestration. This study, published in Forest Ecosystems, focused on two primary forms of biological nitrogen fixation (BNF): symbiotic nitrogen fixation (SNF), which occurs within the root nodules of nitrogen-fixing plants, and asymbiotic nitrogen fixation (ANF), which is carried out by free-living microorganisms in soil and litter. Understanding the environmental controls on these processes is crucial for predicting ...

New bispecific antibody exploits immune receptor proximity to control autoimmunity

2025-07-07
Immune checkpoint pathways regulate T cell function and play pivotal roles in the treatment of both cancer and autoimmune diseases. One key component of these pathways is Lymphocyte Activation Gene 3 (LAG-3)—a classical immunosuppressive receptor that has long posed unresolved questions regarding its biological mechanisms. In a new study published on June 30 in Cell, researchers from the Institute of Biophysics of the Chinese Academy of Sciences, the Grossman School of Medicine at New York University, and the School of Medicine at Zhejiang University have ...

New precision medicine approach identifies a promising ovarian cancer treatment

2025-07-07
A pairing of two experimental drugs inhibits tumor growth and blocks drug-induced resistance in ovarian cancer, according to a preclinical study led by Weill Cornell Medicine investigators. The research reveals a promising strategy against this hard-to-treat malignancy, and more generally demonstrates a powerful new approach for the identification of effective regimens to treat genetically diverse cancers. Ovarian cancer is genetically diverse in the sense that it can be driven by mutations in many different genes. This complicates the standard strategy of developing drugs to target common driver mutations. In the study, published July 7 in Cell Reports Medicine, the researchers applied a ...

‘Space ice’ is less like water than we thought

2025-07-07
“Space ice” contains tiny crystals and is not, as previously assumed, a completely disordered material like liquid water, according to a new study by scientists at UCL (University College London) and the University of Cambridge. Ice in space is different to the crystalline (highly ordered) form of ice on Earth. For decades, scientists have assumed it is amorphous (without a structure), with colder temperatures meaning it does not have enough energy to form crystals when it freezes. In the new study, ...

LAST 30 PRESS RELEASES:

Study unexpectedly finds living in rural, rather than urban environments in first five years of life could be a risk factor for developing type 1 diabetes

Editorial urges deeper focus on heart-lung interactions in pulmonary vascular disease

Five University of Tennessee faculty receive Fulbright Awards

5 advances to protect water sources, availability

OU Scholar awarded Fulbright for Soviet cinema research

Brain might become target of new type 1 diabetes treatments

‘Shore Wars:’ New research aims to resolve coastal conflict between oysters and mangroves, aiding restoration efforts

Why do symptoms linger in some people after an infection? A conversation on post-acute infection syndromes

Study reveals hidden drivers of asthma flare-ups in children

Physicists decode mysterious membrane behavior

New insights about brain receptor may pave way for next-gen mental health drugs

Melanoma ‘sat-nav’ discovery could help curb metastasis

When immune commanders misfire: new insights into rheumatoid arthritis inflammation

SFU researchers develop a new tool that brings blender-like lighting control to any photograph

Pups in tow, Yellowstone-area wolves trek long distances to stay near prey

AI breakthrough unlocks 'new' materials to replace lithium-ion batteries

Making molecules make sense: A regional explanation method reveals structure–property relationships

Partisan hostility, not just policy, drives U.S. protests

The Journal of Nuclear Medicine Ahead-of-Print Tip Sheet: August 1, 2025

Young human blood serum factors show potential to rejuvenate skin through bone marrow

Large language models reshape the future of task planning

Narrower coverage of MS drugs tied to higher relapse risk

Researchers harness AI-powered protein design to enhance T-cell based immunotherapies

Smartphone engagement during school hours among US youths

Online reviews of health care facilities

MS may begin far earlier than previously thought

New AI tool learns to read medical images with far less data

Announcing XPRIZE Healthspan as Tier 5 Sponsor of ARDD 2025

Announcing Immortal Dragons as Tier 4 Sponsor of ARDD 2025

Reporting guideline for chatbot health advice studies

[Press-News.org] Open problems: Cracking cell complexity with collective intelligence