Scientists discover new phenomenon in chiral symmetry breaking
A novel solid-state transition offers clues to the origin of homochirality
2025-08-19
(Press-News.org)
Osaka, Japan-Researchers at The University of Osaka have discovered a new type of chiral symmetry breaking (CSB) in an organic crystalline compound. This phenomenon, involving a solid-state structural transition from an achiral to a chiral crystal, represents a significant advance in our understanding of chirality and offers a simplified model to study the origin of homochirality. This transformation also activates circularly polarized luminescence, enabling new optical materials with tunable light properties.
Chirality, or "handedness," is a fundamental property of objects, from galaxies to molecules, and plays a crucial role in biological systems. However, chiral compounds in living organisms such as sugars and amino acids, exist almost exclusively in a single form. This phenomenon, known as "biological homochirality," has long puzzled scientists, and its underlying mechanism remains elusive. Understanding how a preference for one chiral form over the other arises is crucial for comprehending the origin of life itself.
Previously, two types of CSB phenomena, preferential enrichment and Viedma ripening, have been observed in solutions. However, the complexity of these solution-based systems makes it challenging to pinpoint the precise mechanisms driving CSB. The University of Osaka team’s discovery of a solid-state CSB provides a drastically simplified model for studying this phenomenon. They found that a chiral phenothiazine derivative can transition from an achiral crystalline form to a chiral one while maintaining single crystallinity. This transition involves the inversion of molecular chirality within the crystal lattice without any external influence such as solvents or impurities.
This unique solid-state CSB offers significant advantages for studying the fundamental principles governing chiral selection. The simplicity of the system allows for detailed structural analysis using techniques like X-ray diffraction, enabling researchers to visualize the molecular movements during the transition. This provides valuable insights into the dynamics of CSB, potentially revealing the underlying mechanisms responsible for homochirality in biological systems. Furthermore, the transition triggers a "turn-on" of circularly polarized luminescence (CPL), opening up possibilities for developing novel optical materials with switchable CPL properties.
This discovery has profound implications for understanding the origin of homochirality and its role in the development of life. Furthermore, this research could pave the way for the development of advanced materials with tailored chiral properties for applications in pharmaceuticals, electronics, and other fields.
"It's fascinating how life is composed of only one enantiomer of amino acids, and how this chirality manifests in our bodies," stated Dr. Ryusei Oketani at the University of Osaka, who led the research. "This study represents a major step toward understanding how chiral molecules become biased towards one form and how their assembled structures develop. While this seems like fundamental research, chiral molecules are key components of pharmaceuticals and next-generation materials. This work provides a foundation for efficiently producing these essential substances."
###
This research is published in Chemical Science, the Royal Society of Chemistry’s peer-reviewed flagship journal, and is free to read https://doi.org/10.1039/D5SC02623G
About The University of Osaka
The University of Osaka was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan's leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world. Now, The University of Osaka is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.
Website: https://resou.osaka-u.ac.jp/en
Chemical Science is the flagship journal of the Royal Society of Chemistry and publishes findings of exceptional significance from across the chemical sciences. It is a global, peer-reviewed journal for the discovery and reporting of breakthroughs in basic chemical research, communicated to a worldwide audience without barriers, through open access. All article publication charges have been waived, meaning that the journal is free to read and free to publish. Find out more at rsc.li/chemical-science
END
ELSE PRESS RELEASES FROM THIS DATE:
2025-08-19
A newly developed system transforms human waste into a powerful tool for profitable and sustainable energy and agriculture in resource-limited regions. The prototype, outlined in a Stanford-led study published Aug 19 in Nature Water, recovers a valuable fertilizer from urine, using solar energy that can also provide power for other uses. In the process, the system provides essential sanitation, making wastewater safer to discharge or reuse for irrigation.
“This project is about turning a waste problem into a resource opportunity,” said study ...
2025-08-19
Aging is particularly harsh on the hippocampus — the brain region responsible for learning and memory.
Now, researchers at UC San Francisco have identified a protein that’s at the center of this decline.
They looked at how the genes and proteins in the hippocampus changed over time in mice and found just one that differed between old and young animals. It’s called FTL1.
Old mice had more FTL1, as well as fewer connections between brain cells in the hippocampus and diminished cognitive abilities.
When the researchers artificially increased FTL1 levels in young mice, their ...
2025-08-19
LA JOLLA (August 19, 2025)—Nearly everything you know about plants was first discovered in a plant you’ve likely never heard of. Arabidopsis thaliana, also known as thale cress, is a small, flowering weed that has shaped much of plant biology as we know it. Serving as the representative plant species in most plant research across the last half century, Arabidopsis has taught us how plants respond to light, which hormones control plant behavior, and why some plants grow long, deep roots ...
2025-08-19
CAMBRIDGE, Cambridgeshire, UNITED KINGDOM, 19 August 2025 -- In a revealing Genomic Press Interview published today in Brain Medicine, Dr. David Rubinsztein shares the remarkable journey that led him to discover how cells naturally clear toxic proteins that cause devastating neurodegenerative diseases. The comprehensive interview unveils both the scientific breakthroughs and personal philosophy that have positioned autophagy modulation at the forefront of therapeutic innovation for conditions affecting millions worldwide.
From Cape Town Curiosity to Cambridge Discovery
Dr. Rubinsztein traces his scientific awakening to childhood in South Africa, ...
2025-08-19
University of Warwick researchers have built a new diamond-based magnetic field sensor that could be used to better find tumours through tracing magnetic fluid injected in the body.
A cancer diagnosis is most problematic when cells from the tumour have metastasised (spread) to other organs. This most often occurs through the lymph nodes and the lymphatic draining system. Tests to find whether cancer cells are lodged in the lymph nodes are the gold standard for detecting metastasis and directing the course of treatment.
Published in Physical Review Applied, Warwick researchers report they have built a ...
2025-08-19
Supernovae appear to our eyes—and to astronomical instruments—as brilliant flashes that flare up in the sky without warning, in places where nothing was visible just moments before. The flash is caused by the colossal explosion of a star. Because supernovae are sudden and unpredictable, they have long been difficult to study, but today, thanks to extensive, continuous, high-cadence sky surveys, astronomers can discover new ones almost daily.
It is crucial, however, to develop protocols and methods that detect them promptly; ...
2025-08-19
New research finds that Marine Protected Areas can boost the recovery of globally important kelp forests following marine heatwaves. The findings are published in the British Ecological Society’s Journal of Applied Ecology.
Using four decades of satellite images, University of California, Los Angeles (UCLA) researchers have looked at impacts Marine Protected Areas (MPAs) are having on kelp forests along the coast of California.
They found that although the overall effect of MPAs on kelp forest cover was modest, the benefits ...
2025-08-19
Oil spills and oily industrial wastewater are a nightmare for factories, the environment, and public health. Separating oil from water might sound simple, but in reality it's one of the toughest jobs in wastewater treatment—especially when the mixture contains oils of different densities, tiny droplets, or sticky contaminants. Traditional membrane filters often clog, slow down, and lose efficiency over time.
In International Journal of Extreme Manufacturing, a research team has developed an organic ...
2025-08-19
Osaka, Japan – Life as we know it is based on organic molecules. In these molecules, carbon and hydrogen atoms are linked into a fascinating array of structures, such as chains or rings. One special class of organic molecules, hetero[8]circulenes, can behave in interesting ways because of their ring of eight atoms, and have many applications, including electronic devices responsible for controlling and detecting light.
However, creating these molecules through planned chemical reactions, or the synthetic route, ...
2025-08-19
It’s often mistaken for a heart attack, but Takotsubo cardiomyopathy – previously known as Broken Heart syndrome – is a serious and sometimes fatal heart condition increasingly reported in intensive care units (ICUs). Yet without a clear clinical pathway in ICUs, it’s often missed, putting critically ill patients at risk.
New research from the University of South Australia shows that using electrocardiogram (ECG) patterns and blood markers could provide an early warning system for Takotsubo Syndrome in ICU patients.
The review highlights how critical care nurses with advanced ECG skills can play a key role in recognising early signs of the condition ...
LAST 30 PRESS RELEASES:
[Press-News.org] Scientists discover new phenomenon in chiral symmetry breaking
A novel solid-state transition offers clues to the origin of homochirality