(Press-News.org) Organic molecules detected in the watery plumes that spew out from cracks in the surface of Enceladus could be formed through exposure to radiation on Saturn’s icy moon, rather than originating from deep within its sub-surface ocean. The findings, presented during the EPSC–DPS2025 Joint Meeting in Helsinki this week, have repercussions for assessing the habitability of Enceladus’s ocean.
‘While the identification of complex organic molecules in Enceladus’s environment remains an important clue in assessing the moon’s habitability, the results demonstrate that radiation-driven chemistry on the surface and in the plumes could also create these molecules,’ said Dr Grace Richards, of the Istituto Nazionale di Astrofisica e Planetologia Spaziale (INAF) in Rome, who is presenting the results at the meeting.
The plumes were discovered in 2005 by NASA’s Cassini spacecraft. They emanate from long fractures called ‘tiger stripes’ that are located in Enceladus’s south polar region. The water comes from a sub-surface ocean, and the energy to heat the ocean and produce the plumes is the result of gravitational tidal forces from massive Saturn flexing Enceladus’s interior.
Cassini flew through the plumes, ‘tasting’ some of the molecules within them and finding them to be rich in salts as well as containing a variety of organic compounds. As organic compounds, dissolved in a subsurface ocean of water, could build into prebiotic molecules that are the precursors to life, these findings were of great interest to astrobiologists.
However, results of experiments by Richards and her colleagues show that the exposure to radiation trapped in Saturn’s powerful magnetosphere could trigger the formation of these organic compounds on Enceladus’s icy surface instead. This calls into question their astrobiological relevance.
Richards, with funding from Europlanet, visited facilities at the HUN-REN Institute for Nuclear Research in Hungary, where she and colleagues simulated the composition of ice on the surface and in the walls of Enceladus’s tiger stripes. This ice contained water, carbon dioxide, methane and ammonia and was cooled to -200 degrees Celsius. Richards’s team then bombarded the ice with ions – atoms and molecules stripped of an electron – to replicate the radiation environment around Enceladus. The ions reacted with the icy components, creating a whole swathe of molecular species, including carbon monoxide, cyanate and ammonium. They also produced molecular precursors to amino acids, chains of which form proteins that drive metabolic reactions, repair cells and convey nutrients in lifeforms.
Some of these compounds have previously been detected on the surface of Enceladus, but others have also been identified in the plumes.
‘Molecules considered prebiotic could plausibly form in situ through radiation processing, rather than necessarily originating from the subsurface ocean,’ said Richards. ‘Although this doesn’t rule out the possibility that Enceladus’s ocean may be habitable, it does mean we need to be cautious in making that assumption just because of the composition of the plumes.’
Understanding how to differentiate between ocean-derived organics and molecules formed by radiation interacting with the surface and the tiger stripes will be highly challenging. More data from future missions will be required, such as a proposed Enceladus mission that is currently under consideration as part of the Voyage 2050 recommendations for the European Space Agency (ESA)’s science programme up until the middle of the century.
END
Study questions ocean origin of organics in Enceladus’s plumes
2025-09-09
ELSE PRESS RELEASES FROM THIS DATE:
Look out for the keyhole: How to find the safest spots to deflect a hazardous asteroid
2025-09-09
Selecting the right spot to smash a spacecraft into the surface of a hazardous asteroid to deflect it must be done with great care, according to new research presented at the EPSC-DPS2025 Joint Meeting this week in Helsinki. Slamming into its surface indiscriminately runs the risk of knocking the asteroid through a 'gravitational keyhole' that sends it back around to hit Earth at a later date.
"Even if we intentionally push an asteroid away from Earth with a space mission, we must make sure it doesn't drift into one of these ...
The older we get, the fewer favorite songs we have
2025-09-09
Do you think that Spotify's suggestions for new music becomes stranger all the time? It may be because of you. In a unique study with researchers from University of Gothenburg, 15 years of listening data shows that musical taste becomes more refined with age.
Music is a strong marker of identity – but what we listen to changes with age. The results may not be that surprising, but now there is scientific evidence for the first time through an analysis of how listening habits change over time.
The international study from University of Gothenburg, Jönköping University and University of Primorska, ...
Face‑/edge‑shared 3D perovskitoid single crystals with suppressed ion migration for stable X‑ray detector
2025-09-09
As X-ray detection plays an indispensable role in industrial inspection, medical diagnosis, and security checks, the search for high-performance detection materials has never been more critical. Traditional three-dimensional (3D) metal halide perovskites show great promise for direct X-ray detection, yet their inherent ion migration severely undermines detector stability—hindering commercialization. Now, a collaborative team of researchers from institutions including Henan University, Shenzhen Institute of Advanced Technology (Chinese Academy of Sciences), and ...
Multiple solutions help fly embryos overcome the fundamental problem of ‘tissue tectonic collision’
2025-09-09
Combining classic comparative approaches, including collecting species from the wild, and cutting-edge light-induced gene manipulation technology, researchers from Japan and Germany have discovered how developing fly embryos solve the fundamental problem of “tissue tectonic collision” when the rapidly expanding head and torso tissues crash into each other. Different species have evolved different solutions, one of which, the ‘cephalic furrow’, has long been a mystery to developmental biologists because it forms and disappears without leaving a trace.
For an animal to develop properly, two fundamental processes need to happen: cells need to be ...
GLP-1 weight-loss drugs pose hidden risks for young women
2025-09-09
Women taking popular weight-loss medications during their reproductive years may be unaware of associated risks to pregnancy and unborn babies, warn Flinders University researchers.
A new study has revealed that most Australian women of reproductive age prescribed GLP-1 receptor agonists—medications increasingly used for weight loss such as Ozempic—are not using effective contraception, despite known risks during pregnancy.
Published in the Medical Journal of Australia, the ...
Strategies for enhancing energy‑level matching in perovskite solar cells: An energy flow perspective
2025-09-09
Perovskite solar cells (PSCs) have rapidly emerged as a front-runner in next-generation photovoltaic technologies, boasting a certified power conversion efficiency (PCE) of 26.95%—now rivaling crystalline silicon and CIGS cells. Yet, a critical bottleneck remains: energy losses stemming from mismatched energy levels between the perovskite absorber and charge transport layers (electron transport layers, ETLs; hole transport layers, HTLs), which hinder charge separation and transport. To address this, a team of researchers from Nanjing Tech University has published a landmark review in Nano-Micro Letters, systematically analyzing strategies to optimize energy-level alignment ...
3D‑printed boron‑nitrogen doped carbon electrodes for sustainable wastewater treatment via MPECVD
2025-09-09
As global concerns over emerging contaminants (such as pharmaceuticals) in wastewater grow, traditional treatment methods like ozone oxidation and activated carbon adsorption face limitations—from high energy consumption to reliance on critical raw materials. Now, a collaborative team of researchers from Gdansk University of Technology (Poland), Università Politecnica delle Marche (Italy), and Lund University (Sweden) has developed a game-changing solution: 3D-printed boron-nitrogen (B,N)-doped carbon electrodes fabricated via a synergistic combination of 3D printing, phase ...
Screening anionic groups within zwitterionic additives for eliminating hydrogen evolution and dendrites in aqueous zinc ion batteries
2025-09-09
As global demand grows for safe, low-cost, and sustainable energy storage technologies, aqueous zinc-ion batteries (AZIBs) have gained increasing attention due to their high theoretical capacity, environmental friendliness, and intrinsic safety. However, their practical application has long been hindered by two major challenges: uncontrolled zinc dendrite growth and hydrogen evolution reactions (HER), both of which degrade battery performance and lifespan.
Now, a collaborative research team from Nanjing University, The University of Queensland, and Shanghai Jiao Tong University has developed an ...
New tectonic geodynamics textbook bridges scientific disciplines
2025-09-09
Thorsten Becker, a professor at The University of Texas at Austin’s Jackson School of Geosciences, is the author of a new textbook, “Tectonic Geodynamics.” The book is co-authored with Claudio Faccenna, who was formerly at UT, and is now a professor at the Helmholtz Centre for Geosciences in Potsdam and at Roma TRE University.
The textbook is the first to integrate tectonics, structural geology, and geodynamics in a single volume. It will be released in November by Princeton University Press and is available for pre-order.
Although ...
Tiny and powerful – metamaterial lenses for your phones and drones
2025-09-09
A new approach to manufacturing multicolour lenses could inspire a new generation of tiny, cheap, and powerful optics for portable devices such as phones and drones.
The design uses layers of metamaterials to simultaneously focus a range of wavelengths from an unpolarised source and over a large diameter, overcoming a major limitation of metalenses, said the first author of the paper reporting the design, Mr Joshua Jordaan, from the Research School of Physics at the Australian National University and the ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS).
“Our design has a lot of nice features ...