PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Learn more quickly by transcranial magnetic brain stimulation

Researchers in Bochum examine the effect of TMS

Learn more quickly by transcranial magnetic brain stimulation
2011-01-29
(Press-News.org) What sounds like science fiction is actually possible: thanks to magnetic stimulation, the activity of certain brain nerve cells can be deliberately influenced. What happens in the brain in this context has been unclear up to now. Medical experts from Bochum under the leadership of Prof. Dr. Klaus Funke (Department of Neurophysiology) have now shown that various stimulus patterns changed the activity of distinct neuronal cell types. In addition, certain stimulus patterns led to rats learning more easily. The knowledge obtained could contribute to cerebral stimulation being used more purposefully in future to treat functional disorders of the brain. The researchers have published their studies in the Journal of Neuroscience and in the European Journal of Neuroscience.

Magnetic pulses stimulate the brain

Transcranial magnetic stimulation (TMS) is a relatively new method of pain-free stimulation of cerebral nerve cells. The method, which was presented by Anthony Barker for the first time in 1985, is based on the fact that the cortex, the rind of the brain located directly underneath the skull bone, can be stimulated by means of a magnetic field. TMS is applied in diagnostics, in fundamental research and also as a potential therapeutic instrument. Used in diagnostics, one single magnetic pulse serves to test the activability of nerve cells in an area of the cortex, in order to assess changes in diseases or after consumption of medications or also following a prior artificial stimulation of the brain. One single magnetic pulse can also serve to test the involvement of a certain area of the cortex in a sensorial, motoric or cognitive task, as it disturbs its natural activity for a short period, i.e. "switches off" the area on a temporary basis.

Repeated stimuli change cerebral activity

Since the mid-1990's, repetitive TMS has been used to make purposeful changes to the activability of nerve cells in the human cortex: "In general, the activity of the cells drops as a result of a low-frequency stimulation, i.e. with one magnetic pulse per second. At higher frequencies from five to 50 pulses per second, the activity of the cells increases", explained Prof. Funke. Above all, the researchers are specifically addressing with the effects of specific stimulus patterns like the so-called theta burst stimulation (TBS), in which 50 Hz bursts are repeated with 5 Hz. "This rhythm is based on the natural theta rhythm of four to seven Hertz which can be observed in an EEG", says Funke. The effect is above all dependent on whether such stimulus patterns are provided continuously (cTBS, attenuating effect) or with interruptions (intermittent, iTBS, strengthening effect).

Contact points between cells are strengthened or weakened

It is unknown to a great extent how precisely the activity of nerve cells is changed by repeated stimulation. It is assumed that the contact points (synapses) between the cells are strengthened (synaptic potentation) or weakened (synaptic depression) as a result of the repeated stimulation, a process which also plays an important role in learning. Some time ago, it was also shown that the effects of TMS and learning interact in humans.

Inhibitory cortical cells react particularly sensitive to stimulation

The researchers in Bochum have now shown for the first time that an artificial cortex stimulation specifically changes the activity of certain inhibitory nerve cells as a function of the stimulus protocol used. The balanced interaction of excitatory and inhibitory nerve cells is the absolute prerequisite for healthy functioning of the brain. Nerve cells specialised in inhibition of other nerve cells show a much greater variety in terms of cell shape and activity structure than their excitatory counterparts. Amongst other things, they produce various functional proteins in their cell body. In his studies, Prof. Funke has concentrated on the examination of the proteins Parvalbumin (PV), Calbindin-D28k (CB) and Calretinin (CR). They are formed by various inhibitory cells as a function of activity, with the result that their quantity gives information about the activity of the nerve cells in question.

Stimulus patterns act specifically on certain cells

For example, the examinations showed that activating stimulation protocol (iTBS) almost only reduces the PV content of the cells, whereas continuous stimulation attenuating activity (cTBS protocol), or a likewise attenuating 1 Hz stimulation, mainly reduces the CB production. CR formation was not changed by any of the tested stimulus protocols. Registration of the electrical activity of nerve cells confirmed a change in inhibition of the cortical activity.

Learning more quickly after stimulation

In a second study, recently published in the European Journal of Neuroscience, Prof. Funke's group was able to show that rats also learned more quickly if they were treated with the activating stimulus protocol (iTBS) before each training, but not if the inhibiting cTBS protocol has been used. It was seen that the initially reduced formation of the protein Parvalbumin (PV) was increased again by the learning procedure, but only in the areas of the brain involved in the learning process. For animals not involved in the specific learning task, production of PV remained reduced following iTBS. "The iTBS treatment therefore initially reduces the activity of certain inhibiting nerve cells more generally, with the result that the following learning activities can be stored more easily," concludes Prof. Funke. "This process is termed "gating". In a second step, the learning activity restores the normal inhibition and PV production."

More purposeful treatment in future

Repetitive TMS is already being used in clinical trials with limited success for therapy of functional disorders of the brain, above all in severe depressions. In addition, it was shown that especially disorders of the inhibitory nerve cells play an important role in neuropsychiatric diseases such as schizophrenia. "It is doubtless too early to derive new forms of treatment of functional disorders of the brain from the results of our study, but the knowledge obtained provides an important contribution for a possibly more specific application of TMS in future", is Prof. Funke's hope.



INFORMATION:

Literature

Benali, A., Trippe, J., Weiler, E., Mix, A., Petrasch-Parwez, E., Girzalsky, W., Eysel, U.T., Erdmann, R. and Funke, K. (2011) Theta-burst transcranial magnetic stimulation alters cortical inhibition. J. Neurosci., in press.

Mix, A., Benali, A., Eysel, U.T., Funke, K. (2010) Continuous and intermittent transcranial magnetic theta burst stimulation modify tactile learning performance and cortical protein expression in the rat differently. In: Eur. J. Neurosci. 32(9):1575-86. doi: 10.1111/j.1460-9568.2010.07425.x. Epub 2010 Oct 18.

Further information

Prof. Dr. Klaus Funke, Dept. of Neurophysiology, Faculty of Medicine of the Ruhr University, 44780 Bochum, Tel. 0234/32-23944, E-Mail: funke@neurop.rub.de

[Attachments] See images for this press release:
Learn more quickly by transcranial magnetic brain stimulation

ELSE PRESS RELEASES FROM THIS DATE:

The Oscar curse? Study says that Oscar win for best actress increases the risk of divorce

2011-01-29
Toronto – Will Academy Award nominees Nicole Kidman and Annette Bening be at higher risk for a divorce if they win the Oscar for best actress next month? A long line of best actress winners including Joan Crawford, Bette Davis, Halle Berry and Kate Winslet experienced the end of their marriages not long after taking home their awards. A study by researchers at the University of Toronto's Rotman School of Management and Carnegie Mellon University finds that Oscar winners in the Best Actress category are at a higher risk of divorce than nominees who do not win. By contrast, ...

U of M computer science researchers provide insight into how we understand social networking

2011-01-29
The rise of social media has allowed people to connect and re-connect with friends, colleagues and family from across the world. A new paper by University of Minnesota computer scientists in the College of Science and Engineering provides insights into how the analysis of our social networking interactions could discover things like the emergence or decline of leadership, changes in trust over time, and migration and mobility within particular communities online. The paper, "Computational Modeling of Spatio-temporal Social Networks: A Time-Aggregated Graph Approach," ...

Researchers discover age of onset of puberty predicts adult osteoporosis risk

Researchers discover age of onset of puberty predicts adult osteoporosis risk
2011-01-29
LOS ANGELES (January 27, 2011) – A team of researchers led by Vicente Gilsanz, MD, PhD, director of Clinical Imaging at The Saban Research Institute of Children's Hospital Los Angeles, determined that the onset of puberty was the primary influence on adult bone mineral density, or bone strength. Length of puberty did not affect bone density. Reduced bone mineral density leads to osteoporosis, resulting in bones becoming increasingly brittle and at risk for fracture. Osteoporosis is a significant public health issue with the cost of treatment in 2010 estimated at ...

More frequent drought likely in eastern Africa

More frequent drought likely in eastern Africa
2011-01-29
(Santa Barbara, Calif.) –– The increased frequency of drought observed in Eastern Africa over the last 20 years is likely to continue as long as global temperatures continue to rise, according to UC Santa Barbara scientist Park Williams. The new research, published in Climate Dynamics, indicates that more drought poses increased risk to millions of people in Kenya, Ethiopia, and Somalia, who currently face potential food shortages. "Forecasting precipitation variability from year to year is difficult, and research on the links between global change and precipitation ...

A dash of disorder yields a very efficient photocatalyst

2011-01-29
A little disorder goes a long way, especially when it comes to harnessing the sun's energy. Scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) jumbled the atomic structure of the surface layer of titanium dioxide nanocrystals, creating a catalyst that is both long lasting and more efficient than all other materials in using the sun's energy to extract hydrogen from water. Their photocatalyst, which accelerates light-driven chemical reactions, is the first to combine durability and record-breaking efficiency, making it ...

'Air laser' may sniff bombs, pollutants from a distance

Air laser may sniff bombs, pollutants from a distance
2011-01-29
Princeton University engineers have developed a new laser sensing technology that may allow soldiers to detect hidden bombs from a distance and scientists to better measure airborne environmental pollutants and greenhouse gasses. "We are able to send a laser pulse out and get another pulse back from the air itself," said Richard Miles, a professor of mechanical and aerospace engineering at Princeton, the research group leader and co-author on the paper. "The returning beam interacts with the molecules in the air and carries their finger prints." The new technique differs ...

Researchers discover root cause of blood vessel damage in diabetes

Researchers discover root cause of blood vessel damage in diabetes
2011-01-29
A key mechanism that appears to contribute to blood vessel damage in people with diabetes has been identified by researchers at Washington University School of Medicine in St. Louis. Blood vessel problems are a common diabetes complication. Many of the nearly 26 million Americans with the disease face the prospect of amputations, heart attack, stroke and vision loss because of damaged vessels. Reporting in the Journal of Biological Chemistry, the Washington University researchers say studies in mice show that the damage appears to involve two enzymes, fatty acid synthase ...

City Tech research team casts light on asteroid deflection

2011-01-29
So you think global warming is a big problem? What could happen if a 25-million-ton chunk of rock slammed into Earth? When something similar happened 65 million years ago, the dinosaurs and other forms of life were wiped out. "A collision with an object of this size traveling at an estimated 30,000 to 40,000 mile per hour would be catastrophic," according to NASA researcher and New York City College of Technology (City Tech) Associate Professor of Physics Gregory L. Matloff. What does he recommend? "Either destroy the object or alter its trajectory." Dr. Matloff, whose ...

New research traces evolutionary path of multidrug-resistant strep bacteria

2011-01-29
Despite penicillin and the dozens of antibiotics that followed it, streptococcus bacteria have remained a major threat to health throughout the world. The reason: the superb evolutionary skills of this pathogen to rapidly alter its genetic makeup. In a landmark paper published this week in Science, scientists from Rockefeller University and the Sanger Institute have used full genome sequencing to identify the precise steps in the molecular evolution of Streptococcus pneumoniae. Their research shows the changes the genome of this bacterium has undergone in time and during ...

Genetic clues to compulsive, self-injurious behavior in rare childhood disorder

Genetic clues to compulsive, self-injurious behavior in rare childhood disorder
2011-01-29
Research from the University of California, San Diego School of Medicine provides new clues for the compulsive behavior and cognitive defects associated with a rare childhood neurological disease called Lesch-Nyhan Disease (LND). Two pathways found to be defective in LND are known to be associated with other neurodegenerative disease, such as Alzheimer's and Parknson's diseases, suggesting common causes of cognitive and behavioral defects in these neurological disorders. The research is published on-line today in the PLoS ONE. "This study is important because it opens ...

LAST 30 PRESS RELEASES:

Evolution of fast-growing fish-eating herring in the Baltic Sea

Cryptographic protocol enables secure data sharing in the floating wind energy sector

Can drinking coffee or tea help prevent head and neck cancer?

Development of a global innovative drug in eye drop form for treating dry age-related macular degeneration

Scientists unlock secrets behind flowering of the king of fruits

Texas A&M researchers illuminate the mysteries of icy ocean worlds

Prosthetic material could help reduce infections from intravenous catheters

Can the heart heal itself? New study says it can

Microscopic discovery in cancer cells could have a big impact

Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer

Breakthrough new material brings affordable, sustainable future within grasp

How everyday activities inside your home can generate energy

Inequality weakens local governance and public satisfaction, study finds

Uncovering key molecular factors behind malaria’s deadliest strain

UC Davis researchers help decode the cause of aggressive breast cancer in women of color

Researchers discovered replication hubs for human norovirus

SNU researchers develop the world’s most sensitive flexible strain sensor

Tiny, wireless antennas use light to monitor cellular communication

Neutrality has played a pivotal, but under-examined, role in international relations, new research shows

Study reveals right whales live 130 years — or more

Researchers reveal how human eyelashes promote water drainage

Pollinators most vulnerable to rising global temperatures are flies, study shows

DFG to fund eight new research units

Modern AI systems have achieved Turing's vision, but not exactly how he hoped

Quantum walk computing unlocks new potential in quantum science and technology

Construction materials and household items are a part of a long-term carbon sink called the “technosphere”

First demonstration of quantum teleportation over busy Internet cables

Disparities and gaps in breast cancer screening for women ages 40 to 49

US tobacco 21 policies and potential mortality reductions by state

AI-driven approach reveals hidden hazards of chemical mixtures in rivers

[Press-News.org] Learn more quickly by transcranial magnetic brain stimulation
Researchers in Bochum examine the effect of TMS