(Press-News.org) Quantum satellites currently beam entangled particles of light from space down to different ground stations for ultra-secure communications. New research shows it is also possible to send these signals upward, from Earth to a satellite; something once thought unfeasible.
This breakthrough overcomes significant barriers to current quantum satellite communications. Ground station transmitters can access more power, are easier to maintain and could generate far stronger signals, enabling future quantum computer networks using satellite relays.
The study, Quantum entanglement distribution via uplink satellite channels, by Professor Simon Devitt, Professor Alexander Solntsev and a research team from the University of Technology Sydney (UTS), was recently published in the journal Physical Review Research.
China launched the Micius satellite in 2016, which enabled the first experiments with the transmission of quantum-encrypted information from space. In 2025, the Jinan-1 microsatellite extended this progress with a 12,900 km quantum link between China and South Africa.
“Current quantum satellites create entangled pairs in space and then send each half of the pair down to two places on Earth – called a “downlink”, said Professor Solntsev. “It’s mostly used for cryptography, where only a few photons (particles of light) are needed to generate a secret key.”
The reverse idea, where entangled photon pairs are created on the ground and sent upward to a satellite, hadn’t been taken seriously. It was thought that an “uplink” approach wouldn’t work due to signal loss, interference and scattering.
“The idea is to fire two single particles of light from separate ground stations to a satellite orbiting 500 km above Earth, travelling at about 20,000 km per hour, so that they meet so perfectly as to undergo quantum interference. Is this even possible?” said Professor Devitt.
“Surprisingly, our modelling showed that an uplink is feasible. We included real-world effects such as background light from the earth and sunlight reflections from the Moon, atmospheric effects and the imperfect alignment of optical systems,” he said.
The researchers suggest the uplink concept could be tested in the near future using drones or receivers on balloons, paving the way for future quantum networks across countries and continents using small low-orbit satellites.
“A quantum internet is a very different beast from current nascent cryptographic applications. It’s the same primary mechanism but you need significantly more photons – more bandwidth – to connect quantum computers,” said Professor Devitt.
“The uplink method could provide that bandwidth. The satellite only needs a compact optical unit to interfere incoming photons and report the result, rather than quantum hardware to produce the trillions upon trillions of photons per second needed to overcome losses to the ground, allowing for a high-bandwidth quantum link. That keeps costs and size down and makes the approach more practical.”
“In the future, quantum entanglement is going to be a bit like electricity. A commodity that we talk about that powers other things. It’s generated and transmitted in a way that is often invisible to the user; we just plug in our appliances and use it. This will ultimately be the same for large quantum entanglement networks. There will be quantum devices that plug into an entanglement source as well as a power source, utilising both to do something useful,” he said.
The project brings together experts from the UTS Faculty of Engineering and IT and the Faculty of Science, combining strengths in quantum networking, systems modelling and photonics. It highlights how cross-faculty collaboration at UTS is driving solutions to major technology challenges.
END
Scientists reveal it is possible to beam up quantum signals
New research shows it is feasible to send quantum signals from Earth to a satellite, paving the way for stronger quantum communication networks.
2025-11-05
ELSE PRESS RELEASES FROM THIS DATE:
Asymmetric stress engineering of dense dislocations in brittle superconductors for strong vortex pinning
2025-11-05
A collaborated research team led by Prof. MA Yanwei from the Institute of Electrical Engineering (IEE) of Chinese Academy of Sciences (CAS), has shattered records in the current-carrying performance of iron-based superconducting wires.
Their breakthrough, enabled by a novel strategy to engineer high-density flux pinning centers via an asymmetric stress field, is published in Advanced Materials.
The Steady High Magnetic Field Facility (CHMFL), the Hefei Institutes of Physical Science ...
Shared synaptic mechanism for Alzheimer's and Parkinson’s disease unlocks new treatment possibilities
2025-11-05
Parkinson’s and Alzheimer’s diseases are the two most common neurodegenerative disorders, affecting millions of people worldwide. Published in the Journal of Neuroscience, new research from the Okinawa Institute of Science and Technology (OIST) suggests a shared molecular cascade between the two diseases which causes synaptic dysfunctions, advancing our understanding of how their symptoms are produced.
The researchers investigated how brain cell communication across synapses is disrupted by disease-related protein buildup. They found a pathway that interferes with synaptic ...
Plasma strategy boosts antibacterial efficacy of silica-based materials
2025-11-05
Recently, Researcher NI Guohua and Associate Researcher SUN Hongmei from the Institute of Plasma Physics, together with Associate Professor WANG Dong from Anhui Medical University, developed a novel two-step plasma strategy to modify mesoporous silica-supported silver nanoparticles, enabling them to achieve strong antibacterial activity and accelerated wound healing.
Their findings were published in the Chemical Engineering Journal.
Mesoporous silica-supported silver nanoparticles (Ag/MSNs) show great potential for wound ...
High‑performance wide‑temperature zinc‑ion batteries with K+/C3N4 co‑intercalated ammonium vanadate cathodes
2025-11-05
As demand for safe and low-cost energy storage grows, aqueous zinc-ion batteries (AZIBs) have emerged as promising candidates. However, their practical application is hindered by cathode instability and poor low-temperature performance. Now, researchers from The Hong Kong Polytechnic University and Shenzhen University, led by Professor Zijian Li, have developed a novel K⁺ and C3N4 co-intercalated NH4V4O10 (KNVO-C3N4) cathode that delivers exceptional performance across a wide temperature range.
Why K⁺/C3N4 Co-Intercalation ...
Prioritized Na+ adsorption‑driven cationic electrostatic repulsion enables highly reversible zinc anodes at low temperatures
2025-11-05
As renewable energy storage demand grows, the limitations of aqueous zinc metal batteries (AZMBs) in subzero environments become more pronounced. Now, researchers from Harbin University of Science and Technology and Fudan University, led by Professor Xin Liu and Professor Dongliang Chao, have presented a breakthrough solution using trace Na2SO4 as an electrolyte additive. This work offers valuable insights into developing next-generation energy storage technologies that can overcome low-temperature challenges.
Why Na₂SO₄ Matters
Cost-Effective: Na2SO4 is an abundant, low-cost inorganic ...
Engineered membraneless organelles boost bioproduction in corynebacterium glutamicum
2025-11-05
A research team led by Professor WANG Peng from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, together with international researchers, has successfully engineered liquid-liquid phase separation (LLPS)-driven membraneless organelles (MLOs) within the food-grade industrial strain Corynebacterium glutamicum.
The related findings have been published in Synthetic and Systems Biotechnology.
LLPS-driven MLOs represent an emerging technology in cell structure engineering. By dynamically isolating enzymes and substrates, LLPS significantly improves metabolic efficiency and enhances the synthesis of target products.
In ...
Study finds moral costs in over-pricing for essentials
2025-11-05
When companies hike prices on essentials like food, medicine, or medical devices, the financial rewards may be immediate—but the reputational damage may linger and ultimately cost more in the long run.
That’s the finding of a study led by UC Riverside School of Business professor Margaret C. Campbell. Consumers, the research shows, judge prices for essential goods and services not just through the lens of supply and demand, but also through their sense of morality.
“If companies are perceived as taking advantage of vulnerable people—like the elderly or the uninsured—they may make ...
Australian scientists uncover secrets of yellow fever
2025-11-05
University of Queensland researchers have captured the first high-resolution images of the yellow fever virus (YFV), a potentially deadly viral disease transmitted by mosquitoes that affects the liver.
They’ve revealed structural differences between the vaccine strain (YFV-17D) and the virulent, disease-causing strains of the virus.
Dr Summa Bibby from UQ’s School of Chemistry and Molecular Bioscience said despite decades of research on yellow fever, this was the first time a complete 3D structure of a fully mature yellow fever virus particle had been recorded at near-atomic resolution.
“By utilising the well-established Binjari virus platform developed here at ...
Researchers develop high-performance biochar for efficient carbon dioxide capture
2025-11-05
A team of researchers has announced a breakthrough in carbon dioxide (CO2) capture technology, unveiling a novel biochar material synthesized from corn straw using a microwave-assisted, two-step chemical activation strategy. This innovative approach, published in Sustainable Carbon Materials, promises a low-cost, scalable solution for addressing global greenhouse gas emissions and advancing climate change mitigation efforts.
As atmospheric CO2 levels continue to rise, reaching 422.5 ppm globally in 2024, the urgent need for effective capture and sequestration technologies has become more ...
Biodegradable cesium nanosalts activate anti-tumor immunity via inducing pyroptosis and intervening in metabolism
2025-11-05
Recently, a team led by Academician Hongjie Zhang, Researcher Shuyan Song, Associate Researcher Pengpeng Lei, and Dr. Ran An at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, developed an innovative strategy to construct a series of biodegradable cesium nanosalts. These nanosalts activate anti-tumor immunity by inducing pyroptosis and metabolic intervention. The nanosalts induce ion endocytosis in tumor cells using a Trojan horse strategy, disrupting intracellular ion homeostasis, causing a surge in osmotic pressure, and ultimately triggering pyroptosis. Cesium ...
LAST 30 PRESS RELEASES:
Successful bone regeneration using stem cells derived from fatty tissue
ELSI to host first PCST Symposium in Japan, advancing science communication across Asia
Researchers improve marine aerosol remote sensing accuracy using multiangular polarimetry
Alzheimer’s Disease can hijack communication between brain and fat tissue, potentially worsening cardiovascular and metabolic health
New memristor wafer integration technology from DGIST paves the way for brain-like AI chips
Bioinspired dual-phase nanopesticide enables smart controlled release
Scientists reveal it is possible to beam up quantum signals
Asymmetric stress engineering of dense dislocations in brittle superconductors for strong vortex pinning
Shared synaptic mechanism for Alzheimer's and Parkinson’s disease unlocks new treatment possibilities
Plasma strategy boosts antibacterial efficacy of silica-based materials
High‑performance wide‑temperature zinc‑ion batteries with K+/C3N4 co‑intercalated ammonium vanadate cathodes
Prioritized Na+ adsorption‑driven cationic electrostatic repulsion enables highly reversible zinc anodes at low temperatures
Engineered membraneless organelles boost bioproduction in corynebacterium glutamicum
Study finds moral costs in over-pricing for essentials
Australian scientists uncover secrets of yellow fever
Researchers develop high-performance biochar for efficient carbon dioxide capture
Biodegradable cesium nanosalts activate anti-tumor immunity via inducing pyroptosis and intervening in metabolism
Can bamboo help solve the plastic pollution crisis?
Voting behaviour in elections strongly linked to future risk of death
Significant variations in survival times of early onset dementia by clinical subtype
Research finds higher rare risk of heart complications in children after COVID-19 infection than after vaccination
Oxford researchers develop ‘brain-free’ robots that move in sync, powered entirely by air
The science behind people who never forget a face
Study paints detailed picture of forest canopy damage caused by ‘heat dome’
New effort launched to support earlier diagnosis, treatment of aortic stenosis
Registration and Abstract Submission Open for “20 Years of iPSC Discovery: A Celebration and Vision for the Future,” 20-22 October 2026, Kyoto, Japan
Half-billion-year-old parasite still threatens shellfish
Engineering a clearer view of bone healing
Detecting heart issues in breast cancer survivors
Moffitt study finds promising first evidence of targeted therapy for NRAS-mutant melanoma
[Press-News.org] Scientists reveal it is possible to beam up quantum signalsNew research shows it is feasible to send quantum signals from Earth to a satellite, paving the way for stronger quantum communication networks.