PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Model construction and dominant mechanism analysis of Li-ion batteries under periodic excitation

2025-11-13
(Press-News.org)

The lithium-ion battery is a new energy storage device widely employed in various fields such as mobile power, electric vehicles, unmanned aerial vehicles, and spacecrafts due to its high energy, high efficiency, lightweight, and environmental friendliness. Understanding the internal mechanism of the battery is of utmost importance. The electrochemical model provides detailed insights into the internal mechanism of lithium batteries and encompasses the single-particle model and the P2D model, as well as enhancements such as thermal coupling, mechanical stress coupling, and electric double-layer capacitive coupling. However, the dispersion effect of capacitors in solid electrolyte interface (SEI) film capacitors and porous electrodes has been basically ignored, which is essential for analyzing the internal mechanism and managing energy conversion in lithium batteries experiencing short-term effects. Furthermore, the determination of the dominant order of the Faraday process and non-Faraday process within a short time period is essential for accurately predicting the lifespan of lithium batteries subjected to high-frequency periodic excitation and assessing performance degradation. While the frequency range of these two processes can be roughly delineated through electrochemical impedance spectroscopy (EIS), the precise transition time of their dominant positions remains uncertain. In a research article recently published in Space: Science & Technology, researchers from National Active Distribution Network Technology Research Center (NANTEC), Beijing Jiaotong University established for the first time a P2D-coupled non-ideal double-layer capacitor (P2D-CNIC) model which can be used for mechanism analysis under high-frequency periodic signal excitation, taken the generally neglected electric double-layer capacitance and its dispersion effects into consideration.

First, the construction of the P2D-CNIC model is presented, which encompasses P2D model, thermal model, and electric double-layer capacitance model.

Figure 1 demonstrates a schematic diagram of the P2D model. The mathematical expression of the P2D model is generally composed of five nonlinear partial differential algebraic equations (PDAEs), which can be divided into three parts: mass conservation, charge conservation, and electrochemical reaction. Mass conservation comprises two processes: dispersion in the solid phase of the electrode’s active material and concentration distribution in the solution phase of the electrolyte. In solid, active material can be described by Fick’s law in r direction. The solution phase concentration in the electrolyte is given by mass balance. Charge balance depicts the potential distribution of solid and solution phases, where the variation of the solid electrode potential can be expressed by Ohm’s law and the spatiotemporal dynamics of the electrolyte potential is defined concerning the molar flux. In electrochemical reaction, the Butler–Volmer kinetics provides the relationship between the intercalation overpotential, η, and the molar flux, jLi(x,t).

In the thermal model, the energy balance equation is written as ρCp∂T/∂t = ∂(k·∂T/∂x)/∂x + Qirr + Qr + q0. The temperature of the battery calculated according to the thermal model mainly affects the electrochemical reaction rate constant, solid-phase dispersion coefficient, and electrolyte parameters, and the higher the temperature, the greater the impact. This relationship is described by the Arrhenius rate law equation.

In the electric double-layer capacitance model, the current density at the solid/liquid interface includes the non-faradaic current in addition to the faradaic current generated by the electrochemical reaction, as shown in Fig. 2. The non-faradaic current comes from the transient change of charging and discharging of the electric double-layer capacitor. In addition, the dispersion effect of capacitance has a great influence, and the capacitance is non-ideal, thus jCap(x,t) = as ∂((Φs – Φe – (jLi + jCap)Rfilm)Cap·ων–1)/∂t where the angular frequency ω = 2πf and f is the frequency of the applied periodic excitation signal.

Then, experiment and model validation are conducted. The subject of this experiment is a pouch cell, with NMC532 and graphite as cathode and anode material, respectively. The electrolyte used is EC:DMC (1:1, w/w), where EC is ethylene carbonate and DMC is dimethyl carbonate. The thickness of the battery is 10.8 mm, the length is 309 mm, and the width is 102 mm. The rate capacity of designed battery at 1 C was 37 Ah. The experimental platform achieves pulse discharge conditions of different frequencies by controlling the on and off time of metal-oxide-semiconductor field-effect transistor (MOSFET). Results are compared among the traditional P2D model, P2D-CIC model, and the proposed P2D-CNIC model. Results (Fig. 3) show that under the influence of the dispersion effect of the electric double-layer capacitance, the voltage response of the electrochemical model exhibits not only variations in value but also important phase changes that should not be overlooked; these differences in both amplitude and phase become more pronounced as the dispersion effect coefficient increases. Capsei also has an undeniable effect on the voltage response of the model in terms of amplitude and phase, and this effect increases with the increase of dispersion effect coefficient. Its impact on battery heat generation cannot be ignored, and this impact will also increase with the increase of dispersion effect coefficient. The traditional P2D model, the P2D-CIC model, and the proposed P2D-CNIC model were compared and analyzed under periodic high-rate pulse discharge conditions (see Fig. 4). It was observed that the voltage response of the traditional P2D model failed to accurately match the actual behavior, lacking a buffering stage during voltage changes. On the other hand, the traditional P2D-CIC model exhibited excessive buffering effect, resulting in higher voltage amplitudes compared to the actual scenario. In contrast, the proposed P2D-CNIC model presented in this paper aligns well with the actual voltage changes. Moreover, three models exhibit important differences in heating. This difference is crucial for analyzing the heating in lithium batteries under the influence of high-frequency periodic signals.

Last, dominant sequence analysis of Faraday processes and non-Faraday processes is presented. Authors applied a half cycle angular frequency of 200π(rad/s) and amplitude of 0.5, 1, 1.5, and 2 C charging and discharging current excitation to the model at 50% SOC, and observed the dominant order of the mid-Faraday process and the non-Faraday process during the charging and discharging processes. Results (in Fig. 5 for cathode and Fig. 6 for anode) show that under short-period signal excitation, the initial dominance is observed by the non-faradaic process of the electrode, which then gradually transitions to the Faraday process. In contrast to the cathode, the anode exhibits a more intricate evolution process divided into three stages. The first stage involves the non-faradaic process of the electric double-layer capacitance of the SEI film. The second stage encompasses the non-faradaic process of the electric double-layer capacitance of the electrode particles, while the third stage entails the faradaic process of the electrode particles.

In conclusion, building upon the verification of the model’s correctness and reliability, this paper focuses on examining the dominant order of the Faraday process and the non-Faraday process of the electrode during high-frequency excitation. The dominant time scales of the behavior of different mechanisms can be clearly observed by the current composition. Such analysis offers valuable insights into the feasibility of studying battery aging and damage under high-frequency periodic excitation, and lays the foundation of long battery life and reliable aerospace batteries.

 

END



ELSE PRESS RELEASES FROM THIS DATE:

Scientists unveil the world's most comprehensive AI-powered tool for neuroscience

2025-11-13
SEATTLE, WASH. —NOVEMBER 13, 2025— Imagine if every neuroscientist in the world could suddenly speak the same language and share their discoveries instantly.  Allen Institute researchers and engineers have now unlocked that potential and the vast discoveries it could lead to through the new Brain Knowledge Platform (BKP).    This first-of-its-kind database and research tool has just launched with data from over 34 million brain cells. It compiles and standardizes the world’s neuroscience data into a common format and language allowing deep, seamless collaboration between international ...

American College of Medical Genetics and Genomics announces CEO transition

2025-11-13
BETHESDA, MD – November 13, 2025 | The American College of Medical Genetics and Genomics (ACMG) announced today that Melanie Wells, MPH, CAE, Chief Executive Officer of ACMG and the ACMG Foundation for Genetic and Genomic Medicine (ACMGF), will step down from her role, concluding her tenure on November 21, 2025. Wells will continue to support the organizations through the transition period, and ACMG and ACMGF will appoint an interim CEO shortly to ensure continuity of leadership and operations. Wells joined the organizations in 2016 and has served in multiple leadership capacities, ...

Hidden signatures of ancient Rome’s master craftsmen revealed

2025-11-13
In the hushed light of a museum gallery, Hallie Meredith discovered something intriguing about ancient Roman glasswork hiding in plain sight. It was February 2023, and the Washington State University art history professor and glassblower was examining a private collection of Roman glass cage cups at the Metropolitan Museum of Art in New York City. These delicate works of luxury were carved from a single block of glass between 300 and 500 CE and have been studied for centuries for their beauty. Meredith’s revelation was not the result of advanced imaging or new technology but rather a simple act of curiosity: turning one of the vessels around. On the reverse side ...

Gas-switch reduction enables alloying in supported catalysts

2025-11-13
Supported catalysts are systems in which the active catalytic materials, such as metals, are dispersed on a solid support material, such as alumina, silica, etc. These catalysts are widely used in various chemical processes. Several methods are available for preparing supported catalysts. Among these, the simple impregnation method is particularly suited for industrial settings. In this method, metal precursors and oxide supports are mixed, dried, and crystallized via heat treatment under certain gases. Various high-performance supported catalysts have been prepared using impregnation. However, this method has mostly been used to synthesize conventional monometallic ...

Pusan National University researchers reveal how sea ice decline intensifies ocean mixing in warming polar regions

2025-11-13
“Shaken, not stirred” — it is widely known how James Bond prefers his martinis. In physics, stirring stretches a fluid into thin streaks, creating turbulence and mixing its properties. In the ocean, a similar process occurs as winds and other forces move seawater. When this happens horizontally over tens to hundreds of kilometres, it is called mesoscale horizontal stirring (MHS). MHS plays a crucial role in redistributing heat, nutrients, and dissolved substances in the upper ocean, shaping plankton distribution and influencing ...

Pusan National University scientists develop robust “Huber mean” for geometric data

2025-11-13
In an era driven by complex data, scientists are increasingly encountering information that doesn’t lie neatly on flat, Euclidean surfaces. From 3D medical scans to robot orientations and AI transformations, much of today’s data lives on curved geometric spaces, called Riemannian manifolds. Analyzing such data accurately has remained a challenge, especially when noise or outliers distort results. To address this, Professor Jongmin Lee from the Department of Statistics, Pusan National University in collaboration with Professor Sungkyu Jung of Seoul National University developed a new statistical method called the ...

Researchers use living fossils to uncover a wealth of genes for seed improvement

2025-11-13
Seed plants are essential as a source of food, fuel, medicine, and more. Now, a multidisciplinary team of researchers has combined deep botanical knowledge with powerful genomic technology to decode and mine the DNA of non-flowering seed plants and uncover genes that evolved to help plants build seeds. These findings, published in Nature Communications, may aid scientists in improving seed crop production in agriculture and in the conservation of these ancient endangered seed plants. In this study by members of the New York Plant Genomics Consortium—a multi-institutional collaboration of botanists, evolutionary and genomics scientists, and bioinformaticians—the researchers ...

Ocean in coastal areas becoming more acidic than previously thought

2025-11-13
UNDER EMBARGO UNTIL THURSDAY 13TH NOVEMBER 1000 GMT   New research from the university of St Andrews has found that some coastal areas will become much more acidic than previously anticipated. With added atmospheric CO2, these areas are acidifying more quickly than thought, posing an existential threat to coastal economies around the world.                                                  ...

Genes may predict suicide risk in depression

2025-11-13
Depression in young adulthood has a stronger hereditary component and is associated with a higher risk of suicide attempts than depression that begins later in life, according to a new study published in Nature Genetics by researchers at Karolinska Institutet, among others. “We hope that genetic information will be able to help healthcare professionals identify people at high risk of suicide, who may need more support and closer follow-up,” says Lu Yi, senior researcher at the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, and one of the study’s corresponding authors. Depression is a ...

Cellarity publishes groundbreaking framework for predicting drug safety in Nature Communications

2025-11-13
SOMERVILLE, Mass., November 13, 2025 – Cellarity, a clinical-stage biotechnology company developing Cell State-Correcting therapies through integrated multi-omics and AI modeling, today announced the publication of a seminal manuscript in Nature Communications, which describes a novel framework for the prediction and characterization of drug-induced liver injury (DILI), along with open-source posting of the model and validation data. DILI is one of the most significant safety challenges in developing therapeutics today, as hepatic safety events undetected in preclinical testing ...

LAST 30 PRESS RELEASES:

First discoveries from new Subaru Telescope program

Ultrafast laser shock straining in chiral chain 2D materials: Mold topology‑controlled anisotropic deformation

Socially aware AI helps autonomous vehicles weave through crowds without collisions

KAIST unveils cause of performance degradation in electric vehicle high-nickel batteries: "added with good intentions​

New ECU tool can help concussion patients manage fear and improve recovery 

People with diabetes face higher risk of sudden cardiac death

Breast density notification increases levels of confusion and anxiousness among women

K’gari’s world famous lakes could be at risk of drying

Airplane and hospital air is cleaner than you might think

Concern over harmful medical advice from social media influencers

Telling women as part of mammography screening that they have dense breasts may have unintended effects

Note- taking alone or combined with large language models helps students understand and remember better than large language models alone

Astronomers spot one of the largest spinning structures ever found in the Universe

Retinal organoid platform identifies biomarkers and affords genetic testing for retinal disease 

New roadmap reveals how everyday chemicals and microbes interact to fuel antimicrobial resistance

Scientists clarify how much metal in soil is “too much” for people and the environment​

Breakthrough pediatric kidney therapy emerges from U. Iowa research

Breakthrough iron-based magnetic material achieves major reduction in core loss

New design tackles heat challenges in high-power fiber lasers

Rapid fabrication of self-propelled, steerable magnetic microcatheters for precision medicine

Poor kidney health linked to higher levels of Alzheimer’s biomarkers in blood

A metamaterial that bridges air and water

Evaluating building materials for climate impact and noise suppression

Scores of dinosaurs walked and swam along a Bolivian shoreline

Captive bottlenose dolphins vary vocalizations during enrichment activities

Adults who want children favor older-looking partners (but not for their money), study suggests

Authoritative parenting styles are associated with better mental health and self-esteem among adolescents, while authoritarian parenting styles are associated with depression and lower self-esteem and

A rose by any other name? Not necessarily—how words sound aesthetically correlates with their memorability, study finds

The odds of iron deficiency in adolescent girls are almost 14 times higher among those who experience heavy menstruation and follow a meat-restricted diet, compared to girls with normal menstruation w

Sperm tails and male infertility: Critical protein revealed by ultrastructure microscope

[Press-News.org] Model construction and dominant mechanism analysis of Li-ion batteries under periodic excitation