System with thermal management for synergistic water production, electricity generation and crop irrigation
2025-11-14
(Press-News.org)
As global water, energy and food demands intensify under climate change, a scalable, round-the-clock technology that simultaneously produces fresh water, electricity and irrigation water is urgently needed. Now researchers from Harbin Institute of Technology, Wuhan University and Tsinghua University—led by Prof. Shih-Hsin Ho—have unveiled an integrated Water/Electricity-Cogeneration–Cultivation (WEC) platform that couples solar-driven desalination with salinity-gradient power generation and zero-pollution crop irrigation. The work offers a practical blueprint for advancing the water–energy–food (WEF) nexus toward carbon-neutral sustainability.
Why WEC Matters
24 h Operation: An energy-storage hydrogel evaporator (ESE) sustains 1.91 kg m-2 h-1 evaporation under 1 sun and 0.54 kg m-2 h-1 in darkness, eliminating daylight-only bottlenecks.
Triple Electricity Gain: Reverse electrodialysis (RED) harvests ~0.30 W m-2 from desalination-enhanced brine—three-fold higher than conventional seawater/river-water RED.
Zero-Discharge Irrigation: System drainage irrigates wheat seedlings (shoot ≈ 87 mm, root ≈ 80 mm within 7 d) without secondary contaminants, closing the WEF loop.
Carbon Offset: One-year operation offsets 1,362.52 kg CO2e, equivalent to burning 1,172 m3 of natural gas.
Innovative Design & Features
Thermal-Management Evaporator: PVA hydrogel embedded with n-octadecane microcapsules stores daytime waste heat and releases it after sunset, extending effective evaporation by ~1 h.
Bio-Graphene Photothermal Layer: Super-hydrophobic surface (153° WCA) on melamine sponge enables rapid solar-thermal localization (>49 °C) while inner hydrophilic networks pump water continuously.
Salinity-Gradient Engine: Desalination continuously boosts brine concentration (3.5 → 5.8 wt%), driving RED open-circuit voltage from 175 to 221 mV and stabilizing power at 0.3 W m-2.
Mechanical Durability: 30 thermal cycles and 21-day continuous operation show no performance decay; compressive strength ~0.19 MPa with full shape recovery.
Applications & Future Outlook
All-Weather Water–Power Coupling: Field tests under natural light/dark cycles deliver 9.37 kg m-2 fresh water and 0.29 W m-2 electricity per day—30 % more water than non-storage controls.
Irrigation without Salt Stress: Drainage Na⁺ (552.8 mg L-1) is <1/60 of seawater; wheat germination and biomass match surface-water controls, validating safe reuse.
Carbon-Neutral Potential: Daytime electricity generation contributes 54 % of total GHG offsets; thermal management alone adds 349 kg CO2e yr-1 (26 % bonus).
Scalability Roadmap: Efficiency can be further lifted via hierarchical water channels, >95 % light-absorbing metamaterials, aerogel insulation and thinner ion-exchange membranes.
This comprehensive study demonstrates that synergistic thermal engineering, desalination and salinity-energy recovery can simultaneously tackle water scarcity, clean-electricity deficits and food irrigation. It provides a readily deployable, low-cost route toward resilient WEF security and global carbon-neutrality goals. Watch for more advances from Prof. Shih-Hsin Ho’s team at Harbin Institute of Technology!
END
ELSE PRESS RELEASES FROM THIS DATE:
2025-11-14
As data theft and counterfeiting grow ever more sophisticated, cryptography demands devices that are miniature, reconfigurable and almost impossible to reverse-engineer. Now researchers from the Shenyang Institute of Automation (CAS), Shanghai University and City University of Hong Kong—led by Prof. Haibo Yu and Prof. Wen Jung Li—have created a micro-dynamic multiple encryption device (μ-DMED) built from coumarin-based metamaterials that can hide, rewrite and store multilevel information under different light fields. The work establishes a new paradigm for on-chip, high-security optical encryption.
Why μ-DMED Matters
All-Optical ...
2025-11-14
Professor Wen-Bo Liu's research group at Wuhan University reported a nickel-catalyzed regioselective hydrogen metallization/5-exo-trig cyclization reaction. Using β-propargylcyclobutanone as a starting material, multi-substituted bicyclo[2.1.1]hexanol can be synthesized in one step, followed by skeletal rearrangement to yield 1,2,4-trisubstituted bicyclo[2.1.1]hexanone. This structure can be used for diverse derivatization reactions. DFT computational studies elucidated the crucial role of carbonyl coordination in regioselectivity control. This research provides a new method for obtaining structurally ...
2025-11-14
LA JOLLA, CA—When labor begins, the uterus must coordinate rhythmic, well-timed contractions to deliver the baby safely. While hormones such as progesterone and oxytocin are key contributors to that process, scientists have long suspected that physical forces—in this case, the stretching and pressure that accompany pregnancy and delivery—also play a role.
Now, a new study from Scripps Research published in Science on November 13, 2025, reveals how the uterus senses and responds to those forces at a molecular level. The findings could help scientists better understand the biological roots of conditions such as stalled labor and preterm birth, guiding ...
2025-11-14
This study is led by Professor Wanneng Yang (National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China). The team created the Arabidopsis Phenotypic Trait Estimation System (APTES), an open-access pipeline integrating computer vision with optimized deep learning models to automate organ phenotyping.
For individual leaf segmentation, an enhanced Cascade Mask R-CNN model achieved precision, recall, and F1 scores of 0.965, 0.958, and 0.961 respectively, representing consistent ~1% improvements ...
2025-11-14
The inspiring online talk, "Turn Waste Into Wonder: Discover How 'Supercharged Biochar' Can Grow a Greener Future!" is now available on demand.
If you couldn't join us live, now is your chance to catch this fascinating discussion. The event took place on October 29 (Wednesday) and featured Prof. Salah Jellali from Sultan Qaboos University, a visionary researcher turning trash into treasure through science.
In this session, hosted by the top-cited Dr. Yu Luo from Zhejiang University, Prof. Jellali reveals how to upgrade plain biochar using wastewater and industrial leftovers to create a smart, slow-release fertilizer that grows healthier ...
2025-11-14
There are more candidates on the waitlist for a liver transplant than there are available organs, yet about half the time a match is found with a donor who dies after cardiac arrest following the removal of life support, the transplant must be canceled.
For this type of organ donation, called donation after circulatory death, the time between the removal of life support and death must not exceed 30 to 45 minutes, or the surgeons will often reject the liver because of the increased risk of complications to the recipient.
Now, Stanford Medicine researchers have developed a machine learning-based ...
2025-11-14
Antibiotic resistance is widely recognized as one of the most urgent public health challenges of the twenty first century. Now, a new study shows that even very small amounts of antibiotics that commonly appear in soil, rivers, wastewater, and agricultural runoff may significantly accelerate the spread of antibiotic resistance genes among bacteria.
The research, published in Biocontaminant, investigates how four typical antibiotics found in the environment influence both vertical and horizontal gene transfer, the two major pathways through which bacteria pass on resistance. The team examined tetracycline, ...
2025-11-14
A new scientific review highlights major advances in the use of iron enhanced biochar as a powerful tool for cleaning contaminated environments and supporting sustainable agriculture. The study synthesizes recent breakthroughs in modifying biochar with iron to dramatically improve its ability to capture pollutants, catalyze chemical reactions, and stabilize nutrients in soil and water systems.
Biochar is a carbon rich material created when agricultural residues, wood waste, or other biomass are heated under limited ...
2025-11-14
Alcohol-related diseases and injuries have the potential to cost the Australian healthcare system a staggering $68 billion over 60 years if nothing is done to stop the impact.
The new Griffith University developed The Alcohol Policy (TAP) model is an epidemiological model used to estimate the avoidable alcohol-related disease, injury and healthcare cost burden in the Australian population aged over 15 years.
Dr Mary Wanjau from Griffith’s School of Medicine and Dentistry said if we eliminated alcohol consumption ...
2025-11-14
NIMS, in collaboration with Nagoya University, Gifu University, and the University of Adelaide, has developed a method for simultaneously imaging DNA and RNA inside cells using harmless infrared to near-infrared light. This study enables high-precision detection of all stages of cell death, paving the way for early detection of cell aging and damage for disease prevention. The results were published in Science Advances on October 23, 2025.
Background
Early detection of cellular damage that leads to aging or death is essential for developing therapeutic strategies for many diseases. Achieving this requires observing cellular changes throughout their life cycle by cell ...
LAST 30 PRESS RELEASES:
[Press-News.org] System with thermal management for synergistic water production, electricity generation and crop irrigation