(Press-News.org) BETHESDA, MD – Proteins long known to be essential for hearing have been hiding a talent: they also act as gatekeepers that shuffle fatty molecules across cell membranes. When this newly discovered function goes haywire—due to genetic mutations, noise-induced damage, or certain medications—it may be what kills the delicate sensory cells in our ears, causing permanent hearing loss. The research will be presented at the 70th Biophysical Society Annual Meeting in San Francisco from February 21–25, 2026.
Deep inside our ears, specialized cells called hair cells convert sound vibrations into electrical signals that travel to the brain. These cells get their name from tiny hair-like projections, called stereocilia, arranged in bundles that resemble a mohawk.
“When sound vibrations bend these hair-like structures, it opens channels that let ions flow into the cell, triggering a signal that carry sound to the brain,” explained Hubert Lee, a postdoctoral fellow in the lab of Angela Ballesteros at the National Institute on Deafness and Other Communication Disorders (NIDCD) at the National Institutes of Health. “But when there’s a problem with these channel proteins, the hair cells die. And these cells don’t regenerate—so the hearing loss is permanent.”
The channel proteins in question, called TMC1 and TMC2, have been studied for years as the molecular machinery that converts sound into electrical signals. Mutations in TMC1 are a leading cause of genetic deafness. But the NIDCD team has now discovered these proteins have an entirely separate job.
“We found that TMC1 and TMC2 are not only ion channels important for hearing—they also regulate the cell membrane,” said Ballesteros. “And we think this membrane regulatory function, not the channel function, is what leads to hair cell death when things go wrong.”
The channels also act as “lipid scramblases”—molecular machines that move fatty molecules called phospholipids from one side of a cell membrane to the other. Normally, different types of phospholipids are kept on specific sides of the membrane. When one particular phospholipid, called phosphatidylserine, gets flipped to the outer surface of a cell, it’s often a signal that the cell is dying.
“Hair cells from mouse models carrying mutations in TMC1 that cause hearing loss exhibit this membrane dysregulation—phosphatidylserine gets externalized, and the membrane starts blebbing and falling apart,” Ballesteros said. “This is an apoptotic hallmark. It's what's killing the hair cells.”
The discovery also sheds light on why certain medications cause hearing loss as a side effect. Common antibiotics called aminoglycosides are known to damage hearing, and the researchers found these drugs activate the same membrane-disrupting scramblase activity in vivo.
“Scientists initially thought these drugs caused hearing loss by blocking the channel function of TMCs in vivo,” Lee said. “But what we’re seeing now is that in the chaotic environment of the living hair cell, these drugs act as potent disruptors, triggering a collapse of membrane asymmetry. Yet, in the serene isolation of our reconstituted system, the protein remains indifferent to them, suggesting that other factors, such as lipid specificity or missing protein partners, are at play.”
The team also discovered that the scramblase activity depends on cholesterol levels in the cell membrane—a finding that could point toward future treatments based on diet or cholesterol management that could someday help protect our ears from ototoxic medications or genetic hearing loss.
“If we understand the mechanism by which these drugs activate the scramblase, we might be able to design new drugs that lack this effect,” said Yein Christina Park, graduate student at the NIH-JHU program and co-first author of this work. “We could potentially have antibiotics that don’t cause permanent hearing loss.”
###
The Biophysical Society, founded in 1958, is a professional, scientific society established to lead an innovative global community working at the interface of the physical and life sciences, across all levels of complexity, and to foster the dissemination of that knowledge. The Society promotes growth in this expanding field through its Annual Meeting, publications, and outreach activities. Its 6,500 members are located throughout the world, where they teach and conduct research in colleges, universities, laboratories, government agencies, and industry.
END
BETHESDA, MD – Scientists have uncovered an elegant biophysical trick that tuberculosis-causing bacteria use to survive inside human cells, a discovery that could lead to new strategies for fighting one of the world's deadliest infectious diseases.
Tuberculosis kills more than a million people each year and remains a major public health crisis, particularly in Asia, Africa and Latin America. The disease is caused by mycobacteria, which have evolved sophisticated ways to hijack human immune cells ...
BETHESDA, MD – Scientists have developed a new imaging technique that uses a novel contrast mechanism in bioimaging to merge the strengths of two powerful microscopy methods, allowing researchers to see both the intricate architecture of cells and the specific locations of proteins—all in vivid color and at nanometer resolution.
The breakthrough, called multicolor electron microscopy, addresses a longstanding challenge in biological imaging: scientists have traditionally had to choose between seeing fine ...
BETHESDA, MD – The tiny fatty capsules that delivered COVID-19 mRNA vaccines into billions of arms may work better when they’re a little disorganized. That’s the surprising finding from researchers who developed a new way to examine these drug-delivery vehicles one particle at a time—revealing that cramming in more medicine doesn't always mean better results. The research will be presented at the 70th Biophysical Society Annual Meeting in San Francisco from February 21–25, 2026.
Lipid nanoparticles, or LNPs, are microscopic bubbles of fat that can ...
BETHESDA, MD – As space agencies prepare for human missions to the Moon and Mars, scientists need to understand how the absence of gravity affects living cells. Now, a team of researchers has built a rugged, affordable microscope that can image cells in real time during the chaotic conditions of zero-gravity flight—and they’re making the design available to the broader scientific community.
The research, previously published in npj Microgravity, will be presented at the 70th Biophysical Society Annual Meeting in San Francisco from February 21–25, 2026.
“We know that astronauts’ cellular ...
BETHESDA, MD – Denis V. Titov, of the University of California, Berkeley, USA will be honored as the recipient of the Biophysical Journal Paper of the Year-Early Career Investigator Award at the 70th Annual Meeting of the Biophysical Society, held February 21-25 in San Francisco, California. This award recognizes the work of outstanding early career investigators in biophysics. The winning paper is titled “Glycolysis Model Shows that Allostery Maintains High ATP and Limits Accumulation of Intermediates.” The paper was published in Volume 124, Issue 10 of Biophysical Journal.
Glycolysis ...
BETHESDA, MD – When you step outside on a winter morning or pop a mint into your mouth, a tiny molecular sensor in your body springs into action, alerting your brain to the sensation of cold. Scientists have now captured the first detailed images of this sensor at work, revealing exactly how it detects both actual cold and the perceived cool of menthol, a compound derived from mint plants. The research will be presented at the 70th Biophysical Society Annual Meeting in San Francisco from February 21–25, 2026.
The study focused on a protein channel called TRPM8. “Imagine TRPM8 as a microscopic thermometer inside your body,” said Hyuk-Joon Lee, ...
Tokyo, Japan – Researchers from Tokyo Metropolitan University have created a new molecule which carries DNA into biological cells, to treat or vaccinate against illnesses. Many existing options rely on molecules with a strong positive charge, which can cause harmful inflammation. The team overcame this by using a neutral molecule and a new method to bind DNA to it, making it possible to deliver DNA into cells. Successful experiments in mice promise new, more effective therapies.
Over the last few decades, scientists have developed new treatments which deliver genetic information into cells. ...
PROVIDENCE, R.I. [Brown University] — A new study revealed that certain brain regions are more active in people with obsessive-compulsive disorder (OCD) during cognitively demanding tasks. The findings could help inform new ways in which the condition is treated and assessed.
The study, published in Imaging Neuroscience, was conducted by researchers in the laboratory of Theresa Desrochers, an associate professor of brain science and of psychiatry and human behavior at Brown University’s Carney Institute for Brain Science.
Desrochers studies abstract sequential behavior, which is behavior — such ...
Researchers at Duke University’s Nicholas School of the Environment found that ocean saltiness can influence the strength of El Niño, a climate phenomenon that can dramatically affect global weather. The results, published in Geophysical Research Letters in January, could inform development of more precise El Niño forecasts.
El Niño occurs every two to seven years, marked by wetter conditions in some parts of the world and drier weather in others. Its formation depends on weakening ...
ARLINGTON, Va.—Today the Office of Naval Research (ONR) celebrates the 41st year of its Young Investigator Program (YIP) by honoring the Class of 2026 YIP awardees.
Approximately $17 million in funding will be shared by 23 university professors to conduct innovative scientific research addressing critical naval warfighter challenges.
“In order for ONR to enhance the capabilities of the Sailors and Marines who depend on us, we must partner with the brightest scientists and engineers conducting the most innovative scientific and technology research,” said Chief of Naval Research Dr. Rachel Riley. “The Young Investigator Program is a vital component ...