The human genome's breaking points
Comprehensive catalogue uncovers genetic sequence of large-scale differences between human genomes
2011-02-03
(Press-News.org) A detailed analysis of data from 185 human genomes sequenced in the course of the 1000 Genomes Project, by scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, in collaboration with researchers at the Wellcome Trust Sanger Institute in Cambridge, UK, as well as the University of Washington and Harvard Medical School, both in the USA, has identified the genetic sequence of an unprecedented 28 000 structural variants (SVs) – large portions of the human genome which differ from one person to another. The work, published today in Nature, could help find the genetic causes of some diseases and also begins to explain why certain parts of the human genome change more than others.
The international team of scientists identified over a thousand SVs that disrupt the sequence of one or more genes. These gene-altering mutations may be linked to diseases, so knowing the exact genetic sequence of these variations will help clinical geneticists to narrow down their searches for disease-causing mutations.
"Knowing the exact genetic sequence of SVs and their context in the genome could help find the genetic causes for as-yet unexplained diseases," says Jan Korbel, who led the research at EMBL: "this may help us understand why some people remain healthy until old age whereas others develop diseases early in their lives."
This unprecedented catalogue of large-scale genetic variants also sheds light on why some parts of the genome mutate more frequently than others. The scientists found that deletions, where genetic material is lost, and insertions, where it is gained, tend to happen in different places in the genome and through different molecular processes. For instance, large-scale deletions are more likely to occur in regions where DNA often breaks and has to be put back together, as 'chunks' of genetic material can be lost in the process.
"We found 51 hotspots where certain SVs, such as large deletions, appear to occur particularly often" Korbel says: "Six of those hotspots are in regions known to be related to genetic conditions such as Miller-Dieker syndrome, a congenital brain disease that can lead to infant death."
Previous research had already linked SVs – also called copy-number variants – to many genetic conditions, such as colour-blindness, schizophrenia, and certain forms of cancer. However, because of their large size and complex DNA sequence, SVs were difficult to identify. In this study, the researchers overcame these difficulties, developing novel computational approaches that allowed them to pinpoint the exact locations of these large-scale variations in the genome, broadening the potential scope of future disease studies.
"There are many structural variants in everyone's genomes and they are increasingly being associated with various aspects of human health" says Charles Lee, a clinical cytogeneticist and associate professor at Harvard Medical School and Brigham and Women's Hospital, and joint leader of the study: "It is important to be able to identify and comprehensively characterize these genetic variants using state-of-the-art DNA sequencing technologies."
Data from this study is being made publicly available to the scientific community through the 1000 Genomes Project, an international public-private consortium to build the most detailed map of human genetic variation to date. The 1000 Genomes Project aims to sequence 2500 whole genomes by the end of 2012, resulting, by far, in the largest collection of human genomes to date.
INFORMATION:
END
ELSE PRESS RELEASES FROM THIS DATE:
2011-02-03
NGC 3621 is a spiral galaxy about 22 million light-years away in the constellation of Hydra (The Sea Snake). It is comparatively bright and can be seen well in moderate-sized telescopes. This picture was taken using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. The data were selected from the ESO archive by Joe DePasquale as part of the Hidden Treasures competition [1]. Joe's picture of NGC 3621 was ranked fourth in the competition.
This galaxy has a flat pancake shape, indicating that it hasn't yet come face to face ...
2011-02-03
ROCHESTER, Minn. -- For several decades, researchers have been linking genetic mutations to diseases ranging from cancer to developmental abnormalities. What hasn't been clear, however, is how the body's genome sustains such destructive glitches in the first place. Now a team of Mayo Clinic scientists and collaborators provide an unprecedented glimpse of a little-understood gene, called MMSET, revealing how it enables disease-causing mutations to occur. The findings appear in the current issue of Nature.
"MMSET had been known for many years, and had been shown to be mutated ...
2011-02-03
Are we on the verge of being able to stimulate the brain to see the world anew - an electric thinking cap? Research by Richard Chi and Allan Snyder from the Centre for the Mind at the University of Sydney suggests that this could be the case.
They found that participants who received electrical stimulation of the anterior temporal lobes were three times as likely to reach the fresh insight necessary to solve a difficult, unfamiliar problem than those in the control group. The study published on February 2 in the open-access journal PLoS ONE.
According to the authors, ...
2011-02-03
New research from the Twins Early Development Study at King's College London Institute of Psychiatry (IoP), published in PLoS ONE on February 2nd, shows that measures used to judge the effectiveness of schools are partly influenced by genetic factors in students.
The study, funded by the Medical Research Council (MRC), was conducted by scientists in the UK at the MRC Social, Genetic and Developmental Psychiatry Centre, King's IoP, and in the US at the University of New Mexico.
The assumption behind measures of school effectiveness is that changes in student performance ...
2011-02-03
Chestnut Hill, Mass. (2/3/2011) – Analyzing billions of pieces of genetic data collected from people around the world, Boston College biologist Gabor Marth and his research team are playing an integral role in the global effort to sequence 1000 genomes and move closer to understanding in fine detail how genetics influence human health and development.
The most comprehensive map to date of genomic structural variants – the layer of our DNA that begins to distinguish us from one another – has been assembled by analyzing 185 human genomes, Marth and co-authors from the 1000 ...
2011-02-03
BOSTON—Prostate tumors that carry a "signature" of four molecular markers have the potential to become dangerously metastatic if not treated aggressively, researchers at Dana-Farber Cancer Institute report in a study published online today by the journal Nature. The discovery lays the groundwork for the first gene-based test for determining whether a man's prostate cancer is likely to remain dormant within the prostate gland, or spread lethally to other parts of the body.
By analyzing prostate cancer tissue from hundreds of men participating in a national health study, ...
2011-02-03
In a major advance for schizophrenia research, an international team of scientists, led by Jonathan Sebat, PhD, assistant professor of psychiatry and cellular and molecular medicine at the University of California, San Diego School of Medicine, has identified a gene mutation strongly linked to the brain disorder – and a signaling pathway that may be treatable with existing compounds.
The work poses significant and immediate implications for neurobiology and the treatment of schizophrenia because the gene identified by the researchers is an especially attractive target ...
2011-02-03
LA JOLLA, CA—Reprogramming adult cells to recapture their youthful "can-do-it-all" attitude appears to leave an indelible mark, found researchers at the Salk Institute for Biological Studies. When the team, led by Joseph Ecker, PhD., a professor in the Genomic Analysis Laboratory, scoured the epigenomes of so-called induced pluripotent stem cells base by base, they found a consistent pattern of reprogramming errors.
What's more, these incompletely or inadequately reprogrammed hotspots are maintained when iPS cells are differentiated into a more specialized cell type, ...
2011-02-03
A perplexing medical paradox now has an explanation according to research undertaken at Barts and The London School of Medicine and Dentistry and published in the current issue of the Public Library of Science. The paradox is that taking folic acid, a B vitamin, lowers homocysteine in the blood which, epidemiological evidence indicates, should lower the risk of heart attack, but clinical trials of folic acid have not shown the expected benefit.
The explanation is surprisingly simple; lowering homocysteine prevents platelets sticking, which stops blood clots…something ...
2011-02-03
It may look like an over-grown slug, but scientists at Newcastle University believe the sea cucumber could play a vital role in the fight to save our seas - and become an unusual addition to British gourmet food.
Not only is this salty Asian delicacy a rich source of nutrients, it is also an important part of the marine ecosystem. Much like worms working soil in a garden, sea cucumbers are responsible for cleaning up the sea bed - moving, consuming and mixing marine sediments.
Used widely in Chinese medicine and cuisine, sea cucumbers are also a rich source of glucosamine ...
LAST 30 PRESS RELEASES:
[Press-News.org] The human genome's breaking points
Comprehensive catalogue uncovers genetic sequence of large-scale differences between human genomes