PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Animal with the most genes? A tiny crustacean

New model organism to aid environmental health protection

Animal with the most genes? A tiny crustacean
2011-02-04
(Press-News.org) BLOOMINGTON, Ind. -- Complexity ever in the eye of its beholders, the animal with the most genes -- about 31,000 -- is the near-microscopic freshwater crustacean Daphnia pulex, or water flea. By comparison, humans have about 23,000 genes. Daphnia is the first crustacean to have its genome sequenced.

The findings are part of a comprehensive report in this week's Science by members of the Daphnia Genomics Consortium, an international network of scientists led by the Center for Genomics and Bioinformatics (CGB) at Indiana University Bloomington and the U.S. Department of Energy's Joint Genome Institute. A bullet-point list of the Science paper's most important findings appears at the end of this release.

"Daphnia's high gene number is largely because its genes are multiplying, by creating copies at a higher rate than other species," said project leader and CGB genomics director John Colbourne. "We estimate a rate that is three times greater than those of other invertebrates and 30 percent greater than that of humans."

Daphnia Genomics Consortium projects can be found at http://daphnia.cgb.indiana.edu, as well as a link to the nearly 40 companion papers based on the data reported in the Science paper.

Scientists have studied Daphnia for centuries because of its importance in aquatic food webs and for its transformational responses to environmental stress. Predators signal some of the animals to produce exaggerated spines, neck-teeth or helmets in self-defense. And like the virgin nymph of Greek mythology that shares its name, Daphnia thrives in the absence of males -- by clonal reproduction, until harsh environmental conditions favor the benefits of sex.

Daphnia's genome is no ordinary genome.

"More than one-third of Daphnia's genes are undocumented in any other organism -- in other words, they are completely new to science," says Don Gilbert, coauthor and Department of Biology scientist at IU Bloomington.

Sequenced genomes often contain some fraction of genes with unknown functions, even among the most well-studied genetic model species for biomedical research, such as the fruit fly Drosophila. By using microarrays (containing millions of DNA strands affixed to microscope slides) that are made to measure the conditions under which these new genes are transcribed into precursors for proteins, experiments that subjected Daphnia to environmental stressors point to these unknown genes having ecologically significant functions.

"If such large fractions of genomes evolved to cope with environmental challenges, information from traditional model species used only in laboratory studies may be insufficient to discover the roles for a considerable number of animal genes," Colbourne said.

Daphnia is emerging as a model organism for a new field of science -- Environmental Genomics -- that aims to better understand how the environment and genes interact. This includes a practical need to apply scientific developments from this field toward managing our water resources and protecting human health from chemical pollutants in the environment.

James E. Klaunig, professor and chair of the School of Health, Physical Education, and Recreation's Department of Environmental Health at IU Bloomington, predicts the present work will yield a more realistic and scientifically-based risk evaluation.

"Genome research on the responses of animals to stress has important implications for assessing environmental risks to humans," Klaunig said. "The Daphnia system is an exquisite aquatic sensor, a potential high-tech and modern version of the mineshaft canary. With knowledge of its genome, and using both field sampling and laboratory studies, the possible effects of environmental agents on cellular and molecular processes can be resolved and linked to similar processes in humans."

The scientists learned that of all sequenced invertebrate genomes so far, Daphnia shares the most genes with humans.

The idea behind environmental genomics for risk assessment is fairly simple. Daphnia's gene expression patterns change depending on its environment, and the patterns indicate what state its cells are in. A water flea bobbing in water containing a chemical pollutant will express by tuning-up or tuning-down a suite of genes differently than its clonal sisters accustomed to water without the pollutant. Importantly, the health effects of most industrially produced compounds at relevant concentrations and mixtures in the environment are unknown, because current testing procedures are too slow, too costly, and unable to indicate the causes for their effects on animals, including human. The new findings suggest that Daphnia's research tools (like microarrays) and genome information can provide a higher-throughput and information-rich method of measuring the condition of our water supply.

"Until now, Daphnia has primarily been used as sentinel species for monitoring the integrity of aquatic ecosystems," said Joseph Shaw, coauthor and IU School of Public and Environmental Affairs biologist. "But with many shared genes between Daphnia and humans, we will now also apply Daphnia as a surrogate model to address issues directly related to human health. This puts us in a position to begin integrating studies of environmental quality with research of human diseases."

A requisite for reaching model system status is a large research community that contributes to its growing body of knowledge and resources. Over the course of the project, the Daphnia Genomics Consortium has grown from a handful of founding members to more than 450 investigators distributed around the globe. Nearly 200 scientists have contributed published work resulting from the genome study, many in open-source journals published as a thematic series by BioMedCentral.

A list of these publications can be found at http://www.biomedcentral.com/series/Daphnia.

"Assembling so many experts around a shared research goal is no small feat," said Peter Cherbas, director of the CGB. "We're obviously proud of the CGB's catalytic role. The genome project signals the coming-of-age of Daphnia as a research tool for investigating the molecular underpinnings of key ecological and environmental problems."

Colbourne agreed, adding, "New model systems rarely arrive on the scene with such clear and important roles to play for advancing a new field of science."

The scientists present findings on the pace at which copied genes gain new functions, including a novel theory that accounts for the apparent rapid evolution of some of Daphnia's gene families (suites of related genes that result from repeated duplication events).

"Gene functions can become distinct very quickly," said Michael Pfrender, coauthor and associate professor of biology at the University of Notre Dame. "We had all assumed that newly copied genes that code for the same proteins would initially have the same functions, and that new functions evolve slowly with age, by acquiring rare beneficial mutations. Instead, we found that half of the newly copied genes had changed their expression very soon, possibly at the time of their origin."

Like in a mystery novel, the DNA evidence presented by examining the patterns of gene duplication in the study's first chapters was combined with clues of the genes' functions in later chapters to propose a new model for how genes accumulate in genomes.

"The smoking gun in this investigation was clear," said Kelley Thomas, coauthor and Hubbard Professor in Genomics at the University of New Hampshire. "A high rate of gene duplication, which produces a steady pool of new genes that have different expressions can facilitate the preservation of some gene-copies by natural selection."

Like most theories for how new genes evolve, their common fate is to wither by disabling mutations. For a new gene to persist, its function must give an advantage to the organism -- and the earlier the better for the gene to avoid bad mutations. In Daphnia's case, there seems to be a sufficiently large pool of young gene copies that some will be expressed in novel circumstances, and by chance be compatible with expression patterns of interacting genes required to perform its new function.

"At first glance, amplified gene families in Daphnia are more likely to be functionally related than not," said Michael Lynch, coauthor and distinguished professor of biology at IU Bloomington. "This suggests that gene functions via duplication often evolve in cooperation with other genes in the genome. We are not yet prepared to generalize our findings until we broaden our investigation to include more Daphnia lineages having different population histories. However, it's quite clear that this genome project opens up enormous opportunities that are not readily accomplished using other models with poorly understood -- and not terribly accessible -- ecologies."

So what other reasons might Daphnia have so many genes compared to other animals? The coauthors of the Science paper begin addressing that issue as well as others related to the genomic architecture and evolution of the species.

"We don't yet have final answers," Pfrender said. "The sequenced isolate did originate from a naturally inbred population, which may contribute to some features of this genome -- and Daphnia's partial asexuality may have a hand to play."

Another possibility, Colbourne said, is that "since the majority of duplicated and unknown genes are sensitive to environmental conditions, their accumulation in the genome could account for Daphnia's flexible responses to environmental change."



INFORMATION:

This work received financial and material support from the Office of Science of the U.S. Department of Energy, the National Science Foundation, Lilly Endowment Inc., Roche NimbleGen Inc., the National Institutes of Health, the U.S. Department of Health and Human Services, and Indiana University.

To speak with Project Leader John Colbourne and other IU Bloomington coauthors (see below), please contact David Bricker, University Communications, at 812-856-9035 or brickerd@indiana.edu.

"The Ecoresponsive Genome of Daphnia pulex", Science (Feb. 4, 2011), by John Kenneth Colbourne et alla

Author list
Colbourne*, J.K., M.E. Pfrender, D. Gilbert*, W.K. Thomas, A. Tucker*, T.H. Oakley, S. Tokishita, A. Aerts, G.J. Arnold, M. Kumar Basu, D.J. Bauer, C.E. Cáceres, L. Carmel, C. Casola*, J.-H. Choi*, C. Detter, Q. Dong*, S. Dusheyko, B.D. Eads*, T. Fröhlich, K.A. Geiler-Samerotte, D. Gerlach, P. Hatcher, S. Jogdeo, J. Krijgsveld, E.V. Kriventseva, D. Kültz, C. Laforsch, E. Lindquist, J. Lopez*, J.R. Manak, J. Muller, J. Pangilinan, R.P. Patwardhan*, S. Pitluck, E.J. Pritham, A. Rechtsteiner*, M. Rho*, I.B. Rogozin, O. Sakarya, A. Salamov, S. Schaack*, H. Shapiro, Y. Shiga, C. Skalitzky, Z. Smith*, A. Souvorov, W. Sung, Z. Tang*, D. Tsuchiya*, H. Tu, H. Vos, M. Wang, Y.I. Wolf, H. Yamagata, T. Yamada, Y. Ye*, J.R. Shaw*, J. Andrews*, T.J. Crease, H. Tang*, S.M. Lucas, H.M. Robertson, P. Bork, E.V. Koonin, E.M. Zdobnov, I. Grigoriev, M. Lynch* and J.L. Boore. 2011.
* IU Bloomington coauthors (20)

Major Findings Largest inventory of genes ever recorded for a sequenced animal, packaged within a tiny genome of only 200 million bases. The genome is made compact by the reduction in size of spaces (introns) between the gene parts that code for proteins. First crustacean genome sequenced. Only 4.5 percent of genes are shared exclusively between Daphnia and insects, arthropods which shared a common ancestor some 500 million years ago. First time an arthropod with a wholly aquatic life cycle has had its genome sequenced. Genes shared by Daphnia and unrelated aquatic vertebrates are identified, and are likely key for living life in water. Genes that have unknown functions -- because they are uniquely identified in Daphnia -- are involved in response to the environment. Of all sequenced genomes belonging to the animal group composed of insects and crustaceans, Daphnia share more genes with humans. The birth rates for genes can be high -- duplications occur three times more in Daphnia pulex than in other invertebrates -- and duplicated genes are more likely to be functionally related than not. Newly duplicated genes can rapidly acquire new functions, which are best identified by specific environmental conditions. Daphnia-specific gene families that have amplified to large numbers include hemoglobins (11 copies), and opsin (visual) genes (46 copies) -- a very old and newly discovered expanded subfamily of opsins was lost in terrestrial animal lineages. The overall data suggest an original hypothesis for how newly duplicated genes are retained in the genome, which depends on the condition-specific regulation of cooperatively evolving genes.


[Attachments] See images for this press release:
Animal with the most genes? A tiny crustacean

ELSE PRESS RELEASES FROM THIS DATE:

Quantum quirk: JILA scientists pack atoms together to prevent collisions in atomic clock

Quantum quirk: JILA scientists pack atoms together to prevent collisions in atomic clock
2011-02-04
BOULDER, Colo.—In a paradox typical of the quantum world, JILA scientists have eliminated collisions between atoms in an atomic clock by packing the atoms closer together. The surprising discovery, described in the Feb. 3 issue of Science Express,* can boost the performance of experimental atomic clocks made of thousands or tens of thousands of neutral atoms trapped by intersecting laser beams. JILA is jointly operated by the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder. JILA scientists demonstrated the new approach using ...

Yale scientists identify a deadly tool in Salmonella's bag of tricks

Yale scientists identify a deadly tool in Salmonellas bag of tricks
2011-02-04
The potentially deadly bacterium Salmonella possesses a molecular machine that marshals the proteins it needs to hijack cellular mechanisms and infect millions worldwide. In a paper published Feb. 3 online in Science Express, Yale University researchers describe in detail how Salmonella, a major cause of food poisoning and typhoid fever, is able to make these proteins line in up in just the right sequence to invade host cells. "These mechanisms present us with novel targets that might form the basis for the development of an entirely new class of anti-microbials," ...

Obesity has doubled since 1980, major global analysis of risk factors reveals

2011-02-04
The study shows that in 2008, more than one in ten of the world's adult population was obese, with women more likely to be obese than men. An estimated 205 million men and 297 million adult women were obese - a total of more than half a billion adults worldwide. The proportion of the world's population with high blood pressure, or uncontrolled hypertension, fell modestly between 1980 and 2008. However, because of population growth and ageing, the number of people with uncontrolled hypertension rose from 600 million in 1980 to nearly 1 billion in 2008. High-income countries ...

2nd member in Alzheimer's toxic duo identified

2011-02-04
SAN ANTONIO, Texas, U.S.A. (Feb. 4, 2011) — Like two unruly boys who need to be split up in class, a pair of protein molecules work together to speed up the toxic events of Alzheimer's disease. Researchers at the UT Health Science Center San Antonio today announced the discovery of the second molecule and said its identification could lead to drugs that disrupt the interaction, and thereby block or slow Alzheimer's onset or progression. Alzheimer's disease is an irreversible, progressive brain disease marked by deterioration of nerve cells and eventual complete loss of ...

New nanomaterials unlock new electronic and energy technologies

2011-02-04
A new way of splitting layered materials to give atom thin "nanosheets" has been discovered. This has led to a range of novel two-dimensional nanomaterials with chemical and electronic properties that have the potential to enable new electronic and energy storage technologies. The collaborative* international research led by the Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Ireland, and the University of Oxford has been published in this week's Science. The scientists have invented a versatile method for creating these ...

Scientists unlock 1 mystery of tissue regeneration

2011-02-04
The human body has a remarkable ability to heal itself. Due to the presence of dedicated stem cells, many organs can undergo continuous renewal. When an organ becomes damaged, stem cells in the organ are typically activated, producing new cells to regenerate the tissue. This activity of stem cells, however, has to be carefully controlled, as too much stem cell activity can cause diseases like cancer. Current research in stem cell biology is starting to unravel the control mechanisms that maintain a balance between efficient regeneration and proper control of stem cell function. ...

CSHL study unmasks a stem cell origin of skin cancer and the genetic roots of malignancy

2011-02-04
Cold Spring Harbor, N.Y. – A constellation of different stem cell populations within our skin help it to cope with normal wear and tear. By constantly proliferating, the stem cells allow skin to replenish itself, allowing each cell to be replaced by a new one about once a month. But the normal cycle of division and death within one or more of these stem cell types can sometimes be derailed by genetic mishaps. Such events are believed to spawn carcinomas and other deadly skin cancers, which are the mostly frequently diagnosed cancers in the United States. Researchers ...

Genetic study uncovers new path to Polynesia

2011-02-04
Surprising new evidence which overturns current theories of how humans colonised the Pacific has been discovered by scientists at the University of Leeds, UK. The islands of Polynesia were first inhabited around 3,000 years ago, but where these people came from has long been a hot topic of debate amongst scientists. The most commonly accepted view, based on archaeological and linguistic evidence as well as genetic studies, is that Pacific islanders were the latter part of a migration south and eastwards from Taiwan which began around 4,000 years ago. But the Leeds research ...

2 severe Amazon droughts in 5 years alarms scientists

2011-02-04
New research shows that the 2010 Amazon drought may have been even more devastating to the region's rainforests than the unusual 2005 drought, which was previously billed as a one-in-100 year event. Analyses of rainfall across 5.3 million square kilometres of Amazonia during the 2010 dry season, published tomorrow in Science, shows that the drought was more widespread and severe than in 2005. The UK-Brazilian team also calculate that the carbon impact of the 2010 drought may eventually exceed the 5 billion tonnes of CO2 released following the 2005 event, as severe droughts ...

Sentinel of change: Waterflea genome to improve environmental monitoring capabilities

Sentinel of change: Waterflea genome  to improve environmental monitoring capabilities
2011-02-04
WALNUT CREEK, Calif.—A tiny crustacean that has been used for decades to develop and monitor environmental regulations is the first of its kind to have its genetic code sequenced and analyzed—revealing the most gene-packed animal characterized to date. The information deciphered could help researchers develop and conduct real-time monitoring systems of the effects of environmental remediation efforts. Considered a keystone species in freshwater ecosystems, the waterflea, Daphnia pulex, is roughly the size of the equal sign on a keyboard. Its 200 million-base genome was ...

LAST 30 PRESS RELEASES:

Scientists unlock secrets behind flowering of the king of fruits

Texas A&M researchers illuminate the mysteries of icy ocean worlds

Prosthetic material could help reduce infections from intravenous catheters

Can the heart heal itself? New study says it can

Microscopic discovery in cancer cells could have a big impact

Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer

Breakthrough new material brings affordable, sustainable future within grasp

How everyday activities inside your home can generate energy

Inequality weakens local governance and public satisfaction, study finds

Uncovering key molecular factors behind malaria’s deadliest strain

UC Davis researchers help decode the cause of aggressive breast cancer in women of color

Researchers discovered replication hubs for human norovirus

SNU researchers develop the world’s most sensitive flexible strain sensor

Tiny, wireless antennas use light to monitor cellular communication

Neutrality has played a pivotal, but under-examined, role in international relations, new research shows

Study reveals right whales live 130 years — or more

Researchers reveal how human eyelashes promote water drainage

Pollinators most vulnerable to rising global temperatures are flies, study shows

DFG to fund eight new research units

Modern AI systems have achieved Turing's vision, but not exactly how he hoped

Quantum walk computing unlocks new potential in quantum science and technology

Construction materials and household items are a part of a long-term carbon sink called the “technosphere”

First demonstration of quantum teleportation over busy Internet cables

Disparities and gaps in breast cancer screening for women ages 40 to 49

US tobacco 21 policies and potential mortality reductions by state

AI-driven approach reveals hidden hazards of chemical mixtures in rivers

Older age linked to increased complications after breast reconstruction

ESA and NASA satellites deliver first joint picture of Greenland Ice Sheet melting

Early detection model for pancreatic necrosis improves patient outcomes

Poor vascular health accelerates brain ageing

[Press-News.org] Animal with the most genes? A tiny crustacean
New model organism to aid environmental health protection