(Press-News.org) Milan, 9 September 2010 – The human brain is a powerful simulation machine. Sports professionals and amateurs alike are well aware of the advantages of mentally rehearsing a movement prior to its execution and it is not surprising that the phenomenon, known as motor imagery, has already been extensively investigated. However, a new study published in the September 2010 issue of Elsevier's Cortex (http://www.elsevier.com/locate/cortex) suggests that there may be more to motor imagery than previously thought. A group of neuroscientists in Italy have shown that the brain is able to invent creative new solutions in order to perform impossible actions.
Researchers from two Rome universities (Tor Vergata, La Sapienza) and a rehabilitation institution (IRCCS Fondazione Santa Lucia) teamed up to investigate the complexity of motor imagery processes. Close similarities are thought to exist between the brain structures that support imagined and real actions, but findings from neuropsychological research tend to contradict this. "In fact, if brain damage disrupts [real] motor functions, simulated actions may or may not show a similar impairment", notes Dr. Elena Daprati. "We took these inconsistencies as a hint that motor imagery might be a more complex phenomenon than previously understood, and reasoned that people involved in rehabilitation should be made aware of this issue for approaches based on mental practice to be successfully applied to patients."
The researchers proposed three tasks – commonly assumed to rely on motor imagery – to stroke patients with varying degrees of motor impairment. All patients performed correctly, but only those with milder motor impairments appeared to have used mental simulation during the tasks. Patients with severe impairments, especially of dominant limbs, avoided mentally mimicking the actions that they could no longer perform, using instead alternative mental strategies to complete the tasks. "These findings indicate that the notion of motor imagery should be expanded to include processes that are not limited to simulation, but also rely on creative operations," said the researchers. "These alternative modes would support the brain's creative potential to invent novel motor patterns, tools and machinery, and evidently, the ability to imagine what may never be achieved in reality."
###
Notes to Editors
The article is "Different motor imagery modes following brain damage" by Elena Daprati, Daniele Nico, Sylvie Duval, Francesco Lacquaniti, and appears in Cortex, Volume 46, Issue 8 (September 2010), published by Elsevier in Italy. Full text of the article featured above is available to members of the media upon request. Please contact the Elsevier press office, newsroom@elsevier.com. To schedule an interview, contact Dr Elena Daprati, Elena.Daprati@uniroma2.it.
About Cortex
Cortex is an international journal devoted to the study of cognition and of the relationship between the nervous system and mental processes, particularly as these are reflected in the behaviour of patients with acquired brain lesions, normal volunteers, children with typical and atypical development, and in the activation of brain regions and systems as recorded by functional neuroimaging techniques. It was founded in 1964 by Ennio De Renzi. The Editor in-chief of Cortex is Sergio Della Sala, Professor of Human Cognitive Neuroscience at the University of Edinburgh. Fax: 0131 6513230, e-mail: cortex@ed.ac.uk. Cortex is available online at http://www.sciencedirect.com/science/journal/00109452
About Elsevier
Elsevier is a world-leading publisher of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including the Lancet (www.thelancet.com) and Cell (www.cell.com), and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include ScienceDirect (www.sciencedirect.com), Scopus (www.scopus.com), Reaxys (www.reaxys.com), MD Consult (www.mdconsult.com) and Nursing Consult (www.nursingconsult.com), which enhance the productivity of science and health professionals, and the SciVal suite (www.scival.com) and MEDai's Pinpoint Review (www.medai.com), which help research and health care institutions deliver better outcomes more cost-effectively.
A global business headquartered in Amsterdam, Elsevier (www.elsevier.com) employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC (www.reedelsevier.com), a world-leading publisher and information provider. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).
END
A new study¹ looking at the effects of the 2006 Massachusetts Health Reform on access to care, health status and ethnic and socioeconomic disparities in healthcare, shows that the legislation has led to improvements in insurance coverage as well as a decline in financial barriers to care. However, to date, it has not increased people's access to a personal physician or improved their self-rated health. Neither has it reduced healthcare inequalities between ethnic or income groups.
The research by Jane Zhu from Harvard Medical School and team suggests that health reform ...
Philadelphia, PA, 9 September, 2010 - There is new evidence that people can learn to control the activity of some brain regions when they get feedback signals provided by functional magnetic resonance brain imaging (fMRI).
Dr. Andrea Caria and colleagues used this specialized imaging technique during training sessions in three groups of healthy participants who were asked to assess visual emotional stimuli (negative or neutral pictures). The scientists were interested in the signals generated by the insula, a brain region implicated in emotion regulation. While performing ...
PITTSBURGH—Computer vision systems can struggle to make sense of a single image, but a new method devised by computer scientists at Carnegie Mellon University enables computers to gain a deeper understanding of an image by reasoning about the physical constraints of the scene.
In much the same way that a child might use a set of toy building blocks to assemble something that looks like a building depicted on the cover of the toy set, the computer would analyze an outdoor scene by using virtual blocks to build a three-dimensional approximation of the image that makes sense ...
Chevy Chase, MD—High levels of the stress hormone cortisol strongly predict cardiovascular death among both persons with and without pre-existing cardiovascular disease according to a new study accepted for publication in The Endocrine Society's Journal of Clinical Endocrinology & Metabolism (JCEM).
In stressful situations, the body responds by producing the hormone cortisol. The effects of cortisol are intended to help the body recover from stress and regain a status of homeostasis, however chronically elevated cortisol levels have been associated with cardiovascular ...
Chevy Chase, MD—Many people have experienced the frustration that comes with regaining weight that was lost from dieting. According to a new study accepted for publication in The Endocrine Society's Journal of Clinical Endocrinology & Metabolism (JCEM), the levels of appetite hormones in the body prior to dieting may serve as a predictor of weight regain after dieting.
"Treating obesity with drugs or dietary programs can be very effective in the short-term, but the long-term success of maintaining the weight lost is usually poor," said Ana Crujeiras, PhD, of Compejo Hospitalario ...
September 9, 2010 – Malaria remains a serious global health problem, killing more than one million people per year. Treatment of the mosquito-borne illness relies on antibiotics, and the emergence of drug-resistant malaria is of growing concern. In a report published online today in Genome Research (www.genome.org), scientists analyzed the genomic features of a Peruvian parasite population, identifying the genetic basis for resistance to a common antibiotic and gaining new insights that could improve the efficacy of diagnosis and treatment strategies.
The World Health ...
STANFORD, Calif. - Stanford University researchers have developed a revolutionary, non-invasive way of quickly predicting the future health of premature infants, an innovation that could better target specialized medical intervention and reduce health-care costs.
"What the PhysiScore does is open a new frontier," said Anna Penn, MD, PhD, an assistant professor of pediatrics at the School of Medicine and a neonatologist at Lucile Packard Children's Hospital. "The national push toward electronic medical records helped us create a tool to detect patterns not readily ...
Scientists at the Johns Hopkins Kimmel Cancer Center have identified two genes whose mutations appear to be linked to ovarian clear cell carcinoma, one of the most aggressive forms of ovarian cancer. Clear cell carcinoma is generally resistant to standard therapy.
In an article published online in the September 8 issue of Science Express, the researchers report that they found an average of 20 mutated genes per each ovarian clear cell cancer studied. Two of the genes were more commonly mutated among the samples: ARID1A, a gene whose product normally suppresses tumors; ...
Athens, GA—A new University of Georgia study published in the journal Nature has identified a critical enzyme that keeps traffic flowing in the right direction in the nervous system, and the finding could eventually lead to new treatments for conditions such as Alzheimer's and Parkinson's disease.
"There was no medical or any other applied science drive for this project; it was purely curiosity about how transport inside cells works," said study co-author Jacek Gaertig, professor in the cellular biology department in the UGA Franklin College of Arts and Sciences. "But ...
New York, NY (September 8, 2010) – Dendritic cells are the grand sentinels of the immune system, standing guard 24/7 to detect foreign invaders such as viruses and bacteria, and bring news of the invasion to other immune cells to marshal an attack. These sentinels, however, nearly always fail to respond adequately to HIV, the virus causing AIDS. Now a team of scientists at NYU Langone Medical Center has discovered a sensor in dendritic cells that recognizes HIV, spurring a more potent immune response by the sentinels to the virus. They report their findings in the September ...