(Press-News.org) This release is available in German.
The era of gas guzzlers that clatter through streets and pollute the air is over. Cars rolling off the assembly line today are cleaner, quieter and – in terms of their performance weight – more efficient than ever before. Nevertheless, development continues. Ever-stricter environmental regulations and steadily rising fuel costs are increasing the demand for cars that further reduce their impact on the environment. But customer demands are often tough for manufacturers to meet: car bodies should be safe yet light-weight and engines durable yet efficient. Year after year, new models must be developed and built that can claim to be better, more efficient, and more intelligent than the last.
The race against time and competitors places high demands on manufacturers and their suppliers. Lasers can help them win the race. Resistant to wear and universally applicable, laser light is an ideal tool in the manufacture of vehicles. Lasers can be used to join, drill, structure, cut or shape any kind of material. Surfaces can be engineered for motors and drive trains that create less friction and use less fuel. Lasers are not only a decisive key towards faster, more efficient and economical production, but also towards energy-saving vehicles. At Laser 2011, Fraunhofer scientists will demonstrate how we can use lasers to save time, money and energy.
A weight-loss program in automotive manufacturing
Extra pounds cost energy. They have to be accelerated and slowed down every time you drive – over the entire lifespan of the car. To reduce weight, manufacturers are increasingly turning to the use of fiber-reinforced plastics, which are 30 to 50 percent lighter than metal. The disadvantage, however, is that these new materials are difficult to process. Fiber-reinforced plastics are brittle, meaning cutting and drilling tools are quickly worn out and the conventional assembly techniques used for metal components are often not appropriate. "Lasers represent an ideal alternative here," explains Dr. Arnold Gillner of the Fraunhofer Institute for Laser Technology ILT in Aachen. "Lasers can cut fiber-reinforced plastics without wear and can join them too. With the appropriate lasers, we can cut and ablate components with minimal thermal side-effects. Lasers can also be used for welding light-weight components – a viable alternative to conventional bonding technology. We can even join fiber-reinforced plastics to metals with laser welding. The laser roughens the metal surface, while the plastic, briefly-heated, penetrates the pores of the metal and hardens. The results are very stable."
Weight reduction can also be achieved with high-strength metallic materials. These, however, are difficult to process. "Joining combinations of various materials allows us to make optimal use of the individual materials' specific properties. But this proves to be difficult in many cases," explains Dr. Anja Techel, Deputy Director of the Fraunhofer Institute for Material and Beam Technology IWS in Dresden. Her team believes in lasers: "With our newly-developed integrated laser tools, we can now even weld together combinations of materials, free of fissures or cracks." At Laser 2011, Fraunhofer scientists will present, for the first time, a new welding head capable not only of focusing with extreme precision but of moving back and forth across the seam with high frequency to mix the molten materials. When they harden, they create a stable bond.
Laser replaces chemistry
Lasers also save time and money in tool design. The molds used in the production of plastic fixtures and steering wheels, for example, have to be structured to give the finished component a visually and tactilely appealing surface. Most car manufacturers order a design from their suppliers, whose surface typically has the appearance of leather. Until now, the negative pattern used to create the design has been etched out of the steel tools used in injection molding – a tedious and time-consuming process. "With lasers, the steel surface can not only be patterned more quickly, but also with greater scope for variety," explains Kristian Arntz of the Fraunhofer Institute for Production Technology IPT. "We can transfer any possible design directly from the CAD model to the tool surface: What will later become a groove in the plastic is preserved as a ridge, while the surrounding material is vaporized. The process is efficient, fully automatic, and highly variable."
Saving energy with low friction motors
Laser technology is also in demand in engine optimization. Engineers strive to keep friction as low as possible in order to improve efficiency. "That is true not only for the electric engines currently being developed, but also for classic internal combustion engines and diesel motors, as well as transmissions and bearings," says Arnold Gillner of the ILT. Ceramic, high-performance coatings are especially desirable, because they are not only resistant to wear but also smooth, which generates less friction. Coated metal components have until now been prohibitively expensive, being produced in plasma chambers in which the ceramic was vaporized and applied to the surface of the components. Fraunhofer scientists have now developed a less expensive and faster method in which work pieces are coated with ceramic nano-particles, then treated with a laser. This finishing process has already been applied to gear wheels and bearings.
Lasers can even be used to make specific modifications to the properties of engine parts. "Friction between the cylinder wall and piston is responsible for a big part of a motor's energy consumption. That is why we try to minimize it. This is especially important for engines featuring modern, automatic start-stop functions that are stressed by frequent ignition," says Gillner. "To protect them, we have to ensure that the cylinder is always coated with a film of oil. Laser technology can help reduce friction with special structuring processes that improve oil adhesion." Fraunhofer researchers aim to increase the engine's life-span and reduce energy consumption in this way.
Fitness program for electric cars
Lasers can even increase the efficiency and life-span of electric batteries. That is good news for manufacturers and owners of electric cars, since batteries continue to be extremely expensive. The engineers and scientists at Fraunhofer are currently working on various solutions to make batteries more durable and less expensive. One approach is to increase the surface area of the electrodes with appropriate coating in order to increase their efficiency. Another approach involves analyzing and optimizing production processes. Manufacturers produce batteries using one anode and one cathode cell, which they then connect. In theory that sounds pretty simple, but in practice the fusing of copper anodes with aluminum cathodes creates brittle connections that break easily. That presents a problem for application in cars that sometimes drive on cobblestone or dirt roads. With the help of lasers, researchers at the ILT have succeeded in forming durable connections between electrodes without creating the culprit brittle alloys. Researchers at the IWS in Dresden have developed an alternative solution in which a laser warms the surfaces and rollers press them together. "Using roll plating with lasers and inductive pre-heating, we were able to create very stable connections with high electrical conductivity, with only a minimal loss of power," reports Anja Techel. "The finished batteries are very efficient. And since only small amounts of electrical energy are transformed into heat, these batteries do not require as much cooling."
INFORMATION:
Lasers take the lead
2011-05-14
ELSE PRESS RELEASES FROM THIS DATE:
Same fungus, different strains
2011-05-14
Fungi play key roles in nature and are valued for their great importance in industry. Consider citric acid, a key additive in several foods and pharmaceuticals produced on a large-scale basis for decades with the help of the filamentous fungus Aspergillus niger. While A. niger is an integral player in the carbon cycle, it possesses an arsenal of enzymes that can be deployed in breaking down plant cell walls to free up sugars that can then be fermented and distilled into biofuel, a process being optimized by U.S. Department of Energy researchers.
Published online ahead ...
Study finds unhealthy substance use a risk factor for not receiving some preventive health services
2011-05-14
(Boston) – Researchers from Boston Medical Center (BMC) and Boston University School of Medicine (BUSM) have identified unhealthy substance use as a risk factor for not receiving all appropriate preventive health services. The findings, which currently appear in BMJ Open, identify unhealthy substance use as a barrier to completion of mammography screening and influenza vaccination.
Cancer and influenza are among the leading causes of mortality in the United States. Influenza is preventable, in part, through vaccination, and mortality from cervical, breast and colorectal ...
Study finds therapies using induced pluripotent stem cells could encounter immune rejection problems
2011-05-14
Biologists at UC San Diego have discovered that an important class of stem cells known as "induced pluripotent stem cells," or iPSCs, derived from an individual's own cells, could face immune rejection problems if they are used in future stem cell therapies.
In today's advance online issue of the journal Nature, the researchers report the first clear evidence of immune system rejection of cells derived from autologous iPSCs that can be differentiated into a wide variety of cell types.
Because iPSCs are not derived from embryonic tissue and are not subject to the federal ...
Crowdsourcing science: Researcher uses Facebook to identify thousands of fish
2011-05-14
Toronto, ON – Facebook is well-known for connecting friends, publicizing events and allowing people ample space to procrastinate online.
But recently, a scientist at the University of Toronto Scarborough (UTSC) helped illuminate a powerful new use for the social networking tool.
In January, UTSC PhD candidate Devin Bloom helped conduct the first ichthyological survey on Guyana's remote Cuyuni River. Led by Oregon State University's Dr. Brian Sidlauskas, the goal was to find out which species of fish live in the Cuyuni and get a good estimate of their abundance.
During ...
Gainesville, Georgia, Spa Wins LNE & Spa Award for Most Outstanding Green/Wellness Spa in 2011
2011-05-14
On April 3, 2011, The Spa on Green Street received a distinguished honor when they were announced as the grand winner of the new Les Nouvelles Esthetiques & Spa Award. Recognized for their excellence in the green/wellness category, The Spa on Green Street emphasizes the importance of preventative care, lifestyle changes, ongoing fitness programs, and environmental responsibility.
Dedicated to the sustained health of their guests and the environment through education and individualized and group programs, The Spa on Green Street is committed to finding ways to improve ...
2 defective proteins conspire to impair the nerve cell's 'powerhouse' in Alzheimer's disease
2011-05-14
Two proteins that are abnormally modified in the brains of patients with Alzheimer disease collude, resulting in ill effects on the crucial energy centers of brain cells, according to new findings published online in Neurobiology of Aging.
The research raises the possibility that pathological forms of two proteins, amyloid beta and tau, which make up the pathological hallmarks of the brains of Alzheimer patients – plaques and tangles – may work in tandem to decrease the survival of brain cells.
The findings come as part of a bundle of results from several laboratories ...
MIT research: Toward faster transistors
2011-05-14
CAMBRIDGE, Mass. -- In the 1980s and '90s, competition in the computer industry was all about "clock speed" — how many megahertz, and ultimately gigahertz, a chip could boast. But clock speeds stalled out almost 10 years ago: Chips that run faster also run hotter, and with existing technology, there seems to be no way to increase clock speed without causing chips to overheat.
In this week's issue of the journal Science, MIT researchers and their colleagues at the University of Augsburg in Germany report the discovery of a new physical phenomenon that could yield transistors ...
The ties that bind: Grandparents and their grandchildren
2011-05-14
Close your eyes for a moment, open your treasure trove of memories and take a step back in time to your childhood. Do you remember your grandfather gently scooping you up into his warm and comforting embrace? Or sitting by your grandmother's side as she lovingly baked pies chock full of delicious, juicy warm apples sprinkled with crumbly cinnamon bits?
The bond between grandparents and their grandchildren seems to be a magical one, and now, a new article published in the April issue of Current Directions in Psychological Science, a journal of the Association for Psychological ...
Scientists design new anti-flu virus proteins using computational methods
2011-05-14
A research article May 12 in Science demonstrates the use of computational methods to design new antiviral proteins not found in nature, but capable of targeting specific surfaces of flu virus molecules.
One goal of such protein design would be to block molecular mechanisms involved in cell invasion and virus reproduction.
Computationally designed, surface targeting, antiviral proteins might also have diagnostic and therapeutic potential in identifying and fighting viral infections.
The lead authors of the study are Sarel J. Fleishman and Timothy Whitehead of ...
I know you, bad guy!
2011-05-14
Most people who have had the experience of having pet animals in their houses have the gut feeling that the animals can "recognize" us. They seem to recognize our faces, our voices and our smell. One way or another, they respond to us differently from other people.
Actually, this is not just a gut feeling. Numerous studies have shown that domesticated animals, such as honey bees, chickens, pigeons, sheep, dogs, llamas, penguins, seals, rabbits, horses, lizards and octopuses, can recognize humans individually. The common thing among these animals is that they are exposed ...