PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Dangerous side effect of common drug combination discovered by Stanford data mining

2011-05-26
(Press-News.org) STANFORD, Calif. — A widely used combination of two common medications may cause unexpected increases in blood glucose levels, according to a study conducted at the Stanford University School of Medicine, Vanderbilt University and Harvard Medical School. Researchers were surprised at the finding because neither of the two drugs — one, an antidepressant marketed as Paxil, and the other, a cholesterol-lowering medication called Pravachol — has a similar effect alone.

The increase is more pronounced in people who are diabetic, and in whom the control of blood sugar levels is particularly important. It's also apparent in pre-diabetic laboratory mice exposed to both drugs. The researchers speculate that between 500,000 and 1 million people in this country may be taking the two medications simultaneously.

The researchers' study relied on an adverse-event reporting database maintained by the U.S. Food and Drug Administration and on sophisticated electronic medical records used by each of the three participating institutions. They used data-mining techniques to identify patterns of associations in large populations that would not be readily apparent to physicians treating individual patients.

"These kinds of drug interactions are almost certainly occurring all of the time, but, because they are not part of the approval process by the Food and Drug Administration, we can only learn about them after the drugs are on the market," said Russ Altman, MD, PhD, professor of bioengineering, of genetics and of medicine at Stanford.

Although some physicians and researchers have questioned the usefulness of the databases to change medical practice, this study underscores their importance.

"It's very exciting because we were led to this conclusion by mining data that already exists, but of which many people were skeptical," said Altman. "Physicians tend to think of electronic medical records as ways to better track data about single patients, but there's another really important component to them — their utility in looking at population effects. The information is there to change health-care practice in a meaningful, substantial way."

Altman, the Guidant Professor for Applied Biomedical Engineering and the chair of Stanford's bioengineering department, is the senior author of the study, which will be published online May 25 in Clinical Pharmacology and Therapeutics. The first author of the research, Nick Tatonetti, is a graduate student in biomedical informatics in Altman's laboratory.

It's not uncommon for medications to have effects together that they don't display alone. However, because most drugs are tested and approved independently, it can be difficult or impossible for clinicians to predict the effects of drug combinations. To learn more, the FDA encourages physicians to report any adverse events a patient may have to their Adverse Event Reporting System, or AERS. Such reporting is voluntary, however, and relies on a patient or a physician noticing that something unusual has happened. It also often doesn't include any follow-up to identify the cause of the event or symptom.

Altman and his colleagues used a technique called latent signal detection to identify random pairs of drugs that caused diabetes-related symptoms, such as altered blood sugar levels. To do so, they began by looking in the AERS for individual drugs known to cause side effects reminiscent of diabetes, such as high blood sugar. They then amassed a profile of symptoms related to hyperglycemia, including fever and fatigue, which occur in patients receiving these drugs.

"We were able to create a symptomatic 'fingerprint' to predict glucose-altering drugs," said Altman. "We then looked for that fingerprint in people who were receiving pairs of drugs not known to affect blood sugar levels." The researchers found four pairs of drugs that seemed to cause such symptoms only in combination; they concentrated on Paxil and Pravachol because they are so commonly prescribed.

"Between 13 and 15 million people in this country have prescriptions for these drugs," said Altman. "By extrapolating from the electronic medical records at Stanford and elsewhere, we can predict that between 500,000 and 1 million people are taking them simultaneously."

However, despite the suggestive nature of the symptoms, none of the patients in AERS who were taking the two drugs were directly reported to have hyperglycemia. To demonstrate a direct connection, the researchers turned to electronic medical records at the three participating institutions. They found that 135 non-diabetic people who had prescriptions for both of the drugs experienced an average increase in their random blood glucose levels of 19 mg/dl after beginning treatment. They also found that 104 people with diabetes experienced an even greater average increase: 48 mg/dl after being prescribed both drugs.

The increases are significant because people with two consecutive, fasting blood glucose levels of 126 mg/dl or higher are considered to be diabetic, and people with levels between 100 and 125 mg/dl are considered to have impaired fasting glucose levels and to be pre-diabetic.

"Understanding and mitigating the effect this pair of medications has on blood sugar could allow a person with diabetes to better control his or her glucose levels, or even prevent someone who is pre-diabetic from crossing that threshold into full-blown diabetes," said Altman.

The researchers then looked at the effect of the two medications in laboratory mice fed a high-fat, high-calorie diet. After several weeks on such a diet, the mice typically become insulin resistant and are considered to be pre-diabetic. They found that the pre-diabetic mice experienced an increase in fasting glucose levels after several weeks on the diet. Neither medication alone increased this baseline level. But when they were given Paxil and Pravachol together for three weeks, the glucose levels of the mice increased dramatically — from about 128 mg/dl to 193 mg/dl.

Altman pointed out that the bioinformatics studies of the databases allowed the mouse experiments to be very focused and targeted. As a result, they were completed more quickly and less expensively than traditional drug screening studies in animals.

The researchers are now applying similar detection methods to identify drug combinations that affect things other than blood glucose levels. The challenge, Altman said, is to triage and prioritize the many intriguing results.

"Post-marketing surveillance of drugs has traditionally been very difficult," said Altman. "The FDA is doing the best it can, but it may be time to embrace some new bioinformatics methods. This study shows that we can identify previously unsuspected issues that may affect hundreds of thousands of people around the world." Stanford is organizing a group of faculty dedicated to using population-based data to make biomedical discoveries.

###

Other Stanford researchers involved in the work include graduate student Guy Fernald; clinical and translational research informatics specialist Gomathi Krishnan, PhD; cardiovascular medicine instructor Patrick Yue, MD; and associate professor of medicine Philip Tsau, MD.

The research was supported by the National Institutes of Health. Information about the Department of Bioengineering, where the research was conducted, is available at http://bioengineering.stanford.edu. The department is jointly operated by the School of Medicine and the School of Engineering.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

PRINT MEDIA CONTACT: Krista Conger at (650) 725-5371 (kristac@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

END



ELSE PRESS RELEASES FROM THIS DATE:

Japan disaster's impact reaches far beyond slow-down in auto exports

2011-05-26
Japan's earthquake, tsunami and nuclear power plant damage have done more than reduce shipments of popular automobiles and car parts to the United States. Damage from the March disaster at Japanese chemical plants that produce raw materials for the electronics components, although modest in itself, has had some of the most severe impacts in history on the global electronics industry. That's the message from one story in a package of status reports on the disaster in the current edition of Chemical & Engineering News (C&EN), ACS' weekly newsmagazine. In the articles, C&EN ...

'Sweet wheat' for tastier and more healthful baking

2011-05-26
"Sweet wheat" has the potential for joining that summertime delight among vegetables — sweet corn — as a tasty and healthful part of the diet, the scientific team that developed this mutant form of wheat concludes in a new study. The report appears in the ACS' Journal of Agricultural and Food Chemistry. Just as sweet corn arose as a mutation in field corn — being discovered and grown by Native American tribes with the Iroquois introducing European settlers to it in 1779 — sweet wheat (SW) originated from mutations in field wheat. Toshiki Nakamura, Tomoya Shimbata and ...

Recycling of Alzheimer's proteins could be key to new treatments

2011-05-26
The formation of abnormal strands of protein called amyloid fibrils — associated with two dozen diseases ranging from Alzheimer's to type-2 diabetes — may not be permanent and irreversible as previously thought, scientists are reporting in the Journal of the American Chemical Society. Rather, protein molecules are constantly attaching and detaching from the fibrils, in a recycling process that could be manipulated to yield new treatments for Alzheimer's and other diseases. In a study that focused on the fibrils associated with Alzheimer's disease (AD), Natàlia Carulla ...

8 hours of resistance

2011-05-26
Temptations to exceed the speed limit are always plentiful, but only reckless drivers give in to such impulses. Likewise, numerous growth factors always abound in our bodies, but only cancerous cells are quickly "tempted" by these chemicals to divide again and again. Healthy cells, in contrast, divide only after being exposed to growth factors for eight continuous hours. What happens during these eight hours in a healthy cell that resists the call to divide? And even more important, what fails to work properly in the cancerous cell during these same hours? Why do cancerous ...

Listening with 1 atom

2011-05-26
The lab, though it may seem quiet and insulated, can be as full of background noise as a crowded train station when we're trying to catch the announcements. Our brains can filter out the noise and focus on the message up to a certain point, but turning up the volume on the loudspeakers – improving the signal-to-noise ratio – helps as well. Separating out the signal from the noise – increasing one while reducing the other – is so basic that much of scientific research could not take place without it. One common method, developed by the physicist Robert Dicke at Princeton ...

Immune system release valve

2011-05-26
The molecular machines that defend our body against infection don't huff and puff, but some of them The molecular machines that defend our body against infection don't huff and puff, but some of them apparently operate on the same principle as a steam engine. Weizmann Institute scientists have discovered a mechanism that controls inflammation similarly to a steam-engine valve: Just when the inflammatory mechanism that protects cells against viruses reaches its peak of activity, the molecular "steam-release valve" interferes, restoring this mechanism to its resting state, ...

Sustainable 'bio-derived' jet fuel industry is achievable

2011-05-26
Establishing an economically and environmentally beneficial, 'bio-derived' Australian and New Zealand aviation fuels industry is a viable proposition, according to a report compiled by CSIRO in collaboration with the region's major aviation industry players.The report, Flight Path to Sustainable Aviation, predicts that over the next 20 years a new, sustainable, Australia-New Zealand aviation fuels industry could cut greenhouse gas emissions by 17 per cent, generate more than 12,000 jobs and reduce Australia's reliance on aviation fuel imports by $2 billion per annum. "This ...

Experts quantify melting glaciers' effect on ocean currents

2011-05-26
A team of scientists from the University of Sheffield and Bangor University have used a computer climate model to study how freshwater entering the oceans at the end of the penultimate Ice Age 140,000 years ago affected the parts of the ocean currents that control climate. A paper based on the research, co-authored by Professor Grant Bigg, Head of the University of Sheffield's Department of Geography, his PhD student Clare Green, and Dr Mattias Green, a Senior Research fellow at Bangor University's School of Ocean Sciences, is currently featured as an Editor's Highlight ...

Vitamin D increases speed of sperm cells

2011-05-26
Vitamin D is important for optimal reproductive function in both animals and humans. It has long been known that serum vitamin D level is important for reproductive function in various animals, but now researchers from the University of Copenhagen and Copenhagen University Hospital have shown that this relationship can also be demonstrated in humans. A new study conducted in 300 normal men showed a positive correlation between the percentage of motile sperm and serum vitamin D levels. The study was recently published in the scientific journal Human Reproduction, and showed ...

Quantum sensor tracked in human cells could aid drug discovery

Quantum sensor tracked in human cells could aid drug discovery
2011-05-26
Groundbreaking research has shown a quantum atom has been tracked inside a living human cell and may lead to improvements in the testing and development of new drugs. Professor Lloyd Hollenberg from the University of Melbourne's School of Physics who led the research said it is the first time a single atom encased in nanodiamond has been used as a sensor to explore the nanoscale environment inside a living human cell. "It is exciting to see how the atom experiences the biological environment at the nanoscale," he said. "This research paves the way towards a new class ...

LAST 30 PRESS RELEASES:

Focal volume optics for composite structuring in transparent solids

Novel mix-charged nanofiltration membrane developed for high-salinity wastewater treatment

Fishy business: Male medaka mating limits revealed

Morning coffee may protect the heart better than all-day coffee drinking

For many low-income single moms, government aid serves as their paid family leave, study shows

Tumor-secreted protein may hold the key to better treatments for deadly brain tumor, study finds

Ready to quit vaping in the new year? A new study uncovers the best ways

Regular physical activity before cancer diagnosis may lower progression and death risks

Basking too long in a sauna without adequate hydration may risk heat stroke, doctors warn

DNA adds new chapter to Indonesia’s layered human history

Many children and young people with diagnosable mental health disorders are not receiving timely help, says new research

Dinosaurs roamed the northern hemisphere millions of years earlier than previously thought, according to new analysis of the oldest North American fossils

Breakthrough Durham University research offers new insights into quenching electrical waves in the heart

SLAC will play a key role in DOE’s new research centers for advancing next-generation microelectronics

Market researchers and online advertisers, are A-B tests leading you astray? A new study says they could be

Research alert: Ketamine use on the rise in U.S. adults; new trends emerge

Crop switching for climate change in China

Cell-based therapy improves outcomes in a pig model of heart attacks

Researchers have a better understanding of how our cells dispose of waste while developing ways to control it

Earth’s air war: Explaining the delayed rise of plants, animals on land

More than half of college students report alcohol-related harms from others

Smart food drying techniques with AI enhance product quality and efficiency

Typical cost of developing new pharmaceuticals is skewed by high-cost outliers

Predicting the progression of autoimmune disease with AI

Unlocking Romance: UCLA offers dating program for autistic adults

Research Spotlight: Researchers reveal the influences behind timing of sleep spindle production

New research reveals groundwater pathways across continent

Students and faculty to join research teams this spring at Department of Energy National Laboratories and a fusion facility

SETI Forward recognizes tomorrow’s cosmic pioneers

Top mental health research achievements of 2024 from the Brain & Behavior Research Foundation

[Press-News.org] Dangerous side effect of common drug combination discovered by Stanford data mining