(Press-News.org) Cambridge, Mass. and Manaus, Brazil – September 16, 2010 – Environmental engineers who might better be called "archeologists of the air" have, for the first time, isolated aerosol particles in near pristine pre-industrial conditions.
Working in the remote Amazonian Basin north of Manaus, Brazil, the researchers measured particles emitted or formed within the rainforest ecosystem that are relatively free from the influence of anthropogenic, or human, activity.
The finding, published in the September 16 issue of Science, could provide crucial clues to understanding cloud formation, determining the specific chemical differences between natural and polluted environments, and modeling how changes in the Amazon Basin might affect the regional and global atmosphere.
"We basically had two 'travel' days worth of pure air movement over 1,600 kilometers before the air came to our measurement site," says lead author Scot Martin, Gordon McKay Professor of Environmental Chemistry in the Harvard School of Engineering and Applied Sciences (SEAS). "By performing the study in the rainy season of central Amazonia (January-March), we avoided contamination. Well-known periods of burning and deforestation occur in the dry season and also largely on the southern edge of Amazonia."
Sampling from a 40-meter high tower and using a range of techniques, the researchers detected and imaged atmospheric particles. They found that particles in the submicron size regime most relevant to climate could be traced to the atmospheric oxidation of plant emissions, or so-called secondary organic aerosol droplets.
"It is a kind of liquid organic particle," explains Martin. "This is the first time that anyone has ever imaged one of these particles in isolation, because in the Northern Hemisphere and other anthropogenic regions, when you collect a particle it is a mess and filled with soot, nitrates, and other pollutants."
In the pristine Amazon Basin the researchers detected aerosol particle number concentrations of a mere several hundred per cm3. By contrast, in heavily industrialized cities where most people live, particles concentrations are in the tens of thousands per cm3, making it impossible in these locations for climate scientists to measure any net change when additional particles, either natural or artificial, are added.
"Those particles are affecting cloud formation and cloud formation is affecting precipitation which is affecting the plants. This is what we call the great tropical reactor," says Martin. "Everything is connected and in our research we finally had a real glimpse of natural aerosol-cloud interactions."
In the atmosphere gas-phase molecules emitted by plants are attacked by very specific molecules such as ozone or hydroxyl radicals that then change the chemical structure of the organic emissions by adding oxygen atoms. As a result, the gas-phase molecules become far less volatile and condense to form new particles or, alternatively, to grow pre-existing particles. These particles serve as the nuclei on which atmospheric water condenses as climate-important clouds form.
The cycle is well known, but the challenge has been how to create an accurate quantitative understanding of the sources of such aerosol particles. The study represents an essential step towards providing a snapshot back in time as well as a baseline—pristine rainforest air prior to industrialization—to understand global climate change today.
"The new insights and data help us and our colleagues to understand and quantify the interdependence of the cycling of aerosols and water in the unperturbed climate system," explains lead co-author Ulrich Pöschl, a scientist at the Max Plank Institute for Chemistry (Mainz, Germany). "A thorough understanding of the unperturbed climate system is a prerequisite for reliable modeling and predictions of anthropogenic perturbations and their effects on global change."
Moreover, the researchers were surprised to discover that the pure droplets dominated, comprising over 85 percent of the climate-relevant submicron particles in the air over the Basin. The low aerosol concentrations and high amount of secondary organic particles may mean that the interplay among particles, clouds, and precipitation in more pristine climate systems is vastly different from those in marine and polluted regions.
As the Amazon Basin is going through a period of development, Brazilian co-author Paulo Artaxo says that scientists will now have an opportunity to watch the influence of human activity on the atmosphere in real time.
"In Brazil, we now have even more solid science to support sustainable development in the Amazonian region," says Artaxo, a professor of physics at the University of São Paulo (Brazil). "Looking ahead, we hope to clarify the mechanisms of how vegetation interacts with the atmosphere and elucidate the main natural feedbacks. Doing so will give us a way to monitor atmospheric change accurately in light of ongoing deforestation."
INFORMATION:
Martin, Pöschl, and Artaxo's co-authors include B. Sinha, S.S. Gunthe, A. Huffman, S. Borrmann, R.M. Garland, G. Helas, D. Rose, J. Schneider, H. Su, M.O. Andreae, all at the Max Plank Institute for Chemistry; E. Mikhailov, the Max Plank Institute for the Institute of Physics, St. Petersburg State University; Q. Chen and S.M. King, both at SEAS; S. R. Zorn at the Max Planck Institute for Chemistry and SEAS; D.K. Farmer and J.L. Jimenez at University of Colorado, Boulder; A. Manzi, National Institute of Amazonian Research; T. Pauliquevis, Institute of Physics of São Paulo and Federal University of São Paulo; A.J. Prenni, Colorado State University; M.D. Peters, Colorado State University and North Carolina State University; P. Roldin, University of Lund.
The authors acknowledge funding from the Humboldt Foundation (STM Research Fellowship), the Max Planck Society, the U.S. National Science Foundation, the Office of Science of the U.S. Department of Energy, the Brazilian CNPq and FAPESP agencies (including FAPESP Visiting Scientist award to STM), the Large-Scale Biosphere Atmosphere Experiment in Amazonia (LBA), and the European integrated project on aerosol cloud climate and air quality interactions (No 036833-2, EUCAARI).
'Archeologists of the air' isolate pristine aerosol particles in the Amazon
Finding could provide crucial clues about cloud formation, differences between natural and polluted environments, and global climate change
2010-09-16
ELSE PRESS RELEASES FROM THIS DATE:
MIT researchers discover an unexpected twist in cancer metabolism
2010-09-16
CAMBRIDGE, Mass. -- In a paper appearing in the Sept. 16 online edition of Science, Matthew Vander Heiden assistant professor of biology and member of the David H. Koch Institute for Integrative Cancer Research at MIT and researchers at Harvard University report a previously unknown element of cancer cells' peculiar metabolism. They found that cells can trigger an alternative biochemical pathway that speeds up their metabolism and diverts the byproducts to construct new cells.
The finding could help scientists design drugs that block cancer-cell metabolism, essentially ...
Foraging for fat: Crafty crows use tools to fish for nutritious morsels
2010-09-16
Tool use is so rare in the animal kingdom that it was once believed to be a uniquely human trait. While it is now known that some non-human animal species can use tools for foraging, the rarity of this behaviour remains a puzzle. It is generally assumed that tool use played a key role in human evolution, so understanding this behaviour's ecological context, and its evolutionary roots, is of major scientific interest. A project led by researchers from the Universities of Oxford and Exeter examined the ecological significance of tool use in New Caledonian crows, a species ...
Optimizing climate change reduction
2010-09-16
Palo Alto, CA—Scientists at the Carnegie Institution's Department of Global Ecology have taken a new approach on examining a proposal to fix the warming planet. So-called geoengineering ideas—large-scale projects to change the Earth's climate—have included erecting giant mirrors in space to reflect solar radiation, injecting aerosols of sulfate into the stratosphere making a global sunshade, and much more. Past modeling of the sulfate idea looked at how the stratospheric aerosols might affect Earth's climate and chemistry. The Carnegie researchers started out differently ...
Imbalanced diet and inadequate exercise may underlie asthma in children
2010-09-16
Even children of a healthy weight who have an imbalanced metabolism due to poor diet or exercise may be at increased risk of asthma, according to new research, which challenges the widespread assumption that obesity itself is a risk factor for asthma.
"Our research showed that early abnormalities in lipid and/or glucose metabolism may be associated to the development of asthma in childhood," said lead author Giovanni Piedimonte, M.D., who is professor and chairman of the Department of Pediatrics at West Virginia University School of Medicine, physician-in-chief at WVU ...
Tulane University researchers find ancient roots for SIV
2010-09-16
VIDEO:
The following video relates to a Science paper featuring contributing author Preston Marx, a Tulane University virologist. The article, "Island Biogeography Reveals the Deep History of SIV, " is embargoed until...
Click here for more information.
The HIV-like virus that infects monkeys is thousands of years older than previously thought, according to a new study led by researchers from Tulane University.
Simian immunodeficiency virus (SIV), which is the ...
Alzheimer's drug boosts perceptual learning in healthy adults
2010-09-16
Berkeley — Research on a drug commonly prescribed to Alzheimer's disease patients is helping neuroscientists at the University of California, Berkeley, better understand perceptual learning in healthy adults.
In a new study, to be published online Thursday, Sept. 16, in the journal Current Biology, researchers from UC Berkeley's Helen Wills Neuroscience Institute and School of Optometry found that study participants showed significantly greater benefits from practice on a task that involved discriminating directions of motion after they took donepezil, sold under the ...
How does Prozac act? By acting on the microRNA
2010-09-16
The response time to antidepressants, such as Prozac, is around three weeks. How can we explain this? The adaptation mechanisms of the neurons to antidepressants has, until now, remained enigmatic. Research, published this week by the teams of Odile Kellermann (Inserm Unit 747 Cellules souches, Signalisation et Prions, Université Paris-Descartes) and of Jean-Marie Launay (Inserm Unit 942 Hôpital Lariboisière, Paris and the mental health network, Santé Mentale), sheds new light on the mechanisms of action of these drugs which have been used for more than 30 years and are ...
Toward resolving Darwin's 'abominable mystery'
2010-09-16
What, in nature, drives the incredible diversity of flowers? This question has sparked debate since Darwin described flower diversification as an 'abominable mystery.' The answer has become a lot clearer, according to scientists at the University of Calgary whose research on the subject is published today in the on-line edition of the journal Ecology Letters.
Drs. Jana Vamosi and Steven Vamosi of the Department of Biological Sciences have found through extensive statistical analysis that the size of the geographical area is the most important factor when it comes to biodiversity ...
AIDS virus lineage much older than previously thought
2010-09-16
An ancestor of HIV that infects monkeys is thousands of years older than previously thought, suggesting that HIV, which causes AIDS, is not likely to stop killing humans anytime soon, finds a study by University of Arizona and Tulane University researchers.
The simian immunodeficiency virus, or SIV, is at least 32,000 to 75,000 years old, and likely much older, according to a genetic analysis of unique SIV strains found in monkeys on Bioko Island, a former peninsula that separated from mainland Africa after the Ice Age more than 10,000 years ago. The research, which appears ...
Scientists report new insights into the moon's rich geologic complexity
2010-09-16
The moon is more geologically complex than previously thought, scientists report Sept. 17 in two papers published in the journal Science.
Their conclusion is based on data from the Diviner Lunar Radiometer Experiment aboard NASA's Lunar Reconnaissance Orbiter (LRO), an unmanned mission to comprehensively map the entire moon. The spacecraft orbits some 31 miles above the moon's surface.
The new data reveal previously unseen compositional differences in the moon's crustal highlands and have confirmed the presence of material surprisingly abundant in silica — a compound ...
LAST 30 PRESS RELEASES:
Reality check: making indoor smartphone-based augmented reality work
Overthinking what you said? It’s your ‘lizard brain’ talking to newer, advanced parts of your brain
Black men — including transit workers — are targets for aggression on public transportation, study shows
Troubling spike in severe pregnancy-related complications for all ages in Illinois
Alcohol use identified by UTHealth Houston researchers as most common predictor of escalated cannabis vaping among youths in Texas
Need a landing pad for helicopter parenting? Frame tasks as learning
New MUSC Hollings Cancer Center research shows how Golgi stress affects T-cells' tumor-fighting ability
#16to365: New resources for year-round activism to end gender-based violence and strengthen bodily autonomy for all
Earliest fish-trapping facility in Central America discovered in Maya lowlands
São Paulo to host School on Disordered Systems
New insights into sleep uncover key mechanisms related to cognitive function
USC announces strategic collaboration with Autobahn Labs to accelerate drug discovery
Detroit health professionals urge the community to act and address the dangers of antimicrobial resistance
3D-printing advance mitigates three defects simultaneously for failure-free metal parts
Ancient hot water on Mars points to habitable past: Curtin study
In Patagonia, more snow could protect glaciers from melt — but only if we curb greenhouse gas emissions soon
Simplicity is key to understanding and achieving goals
Caste differentiation in ants
Nutrition that aligns with guidelines during pregnancy may be associated with better infant growth outcomes, NIH study finds
New technology points to unexpected uses for snoRNA
Racial and ethnic variation in survival in early-onset colorectal cancer
Disparities by race and urbanicity in online health care facility reviews
Exploring factors affecting workers' acquisition of exercise habits using machine learning approaches
Nano-patterned copper oxide sensor for ultra-low hydrogen detection
Maintaining bridge safer; Digital sensing-based monitoring system
A novel approach for the composition design of high-entropy fluorite oxides with low thermal conductivity
A groundbreaking new approach to treating chronic abdominal pain
ECOG-ACRIN appoints seven researchers to scientific committee leadership positions
New model of neuronal circuit provides insight on eye movement
Cooking up a breakthrough: Penn engineers refine lipid nanoparticles for better mRNA therapies
[Press-News.org] 'Archeologists of the air' isolate pristine aerosol particles in the AmazonFinding could provide crucial clues about cloud formation, differences between natural and polluted environments, and global climate change