(Press-News.org) A recent study into the interactions between aminoglycoside antibiotics and their target site in bacteria used computer simulations to elucidate this mechanism and thereby suggest drug modifications.
In the article, which will be published on July 21st in the open-access journal PLoS Computational Biology, researchers from University of Warsaw, Poland, and University of California San Diego, USA, describe their study of the physical basis of one bacterial resistance mechanism - mutations of the antibiotic target site, namely RNA of the bacterial ribosome. They performed simulations and observed changes in the interaction between the antibiotic and the target site when different mutations were introduced.
In hospitals throughout the world, aminoglycosidic antibiotics are used to combat even the most severe bacterial infections, being very successful especially against tuberculosis and plague. However, the continuous emergence of resistant bacteria has created an urgent need to improve these antibiotics. Previous experiments on bacteria have shown that specific point mutations in the bacterial ribosomal RNA confer high resistance against aminoglycosides. However, the physico-chemical mechanism underlying this effect has not been known. Using computer simulations the researchers explained how various mutations in this specific RNA fragment influence its dynamics and lead to resistance.
Bacteria have developed other ways of gaining resistance, not just through mutations, and further studies are underway. The authors are now investigating the resistance mechanism by which bacterial enzymes actively modify and neutralize aminoglycosidic antibiotics. These molecular modeling studies together with experiments could help to design even better aminoglycoside derivatives in the future.
INFORMATION:
Funding: The work is supported by the University of Warsaw (BST1450/2009 1550/2010 and G31-4), Polish Ministry of Science and Higher Education (N N301 245236 and N N301 033339) and Foundation for Polish Science (Focus program and Team project (TEAM/2009-3/8) co-financed by European Regional Development Fund operated within Innovative Economy Operational Programme). Work at UCSD is supported in part by National Science Foundation (NSF), National Institutes of Health, Howard Hughes Medical Institute, Center for Theoretical Biological Physics, National Biomedical Computation Resource, and the NSF Supercomputer Centers. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Competing Interests: The authors have declared that no competing interests exist.
Citation: Romanowska J, McCammon JA, Trylska J (2011) Understanding the Origins of Bacterial Resistance to Aminoglycosides through Molecular Dynamics Mutational Study of the Ribosomal A-Site. PLoS Comput Biol 7(7): e1002099. doi:10.1371/journal.pcbi.1002099
PLEASE ADD THIS LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://www.ploscompbiol.org/doi/pcbi.1002099 (link will go live on Thursday)
CONTACT:
Julia Romanowska
University of Warsaw
Telephone: +48 22 5540832
Email: jrom@icm.edu.pl
Disclaimer
This press release refers to an upcoming article in PLoS Computational Biology. The release is provided by journal staff, or by the article authors and/or their institutions. Any opinions expressed in this release or article are the personal views of the journal staff and/or article contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.
Media Permissions
PLoS Journals publish under a Creative Commons Attribution License, which permits free reuse of all materials published with the article, so long as the work is cited (e.g., Kaltenbach LS et al. (2007) Huntingtin Interacting Proteins Are Genetic Modifiers of Neurodegeneration. PLoS Genet 3(5): e82. doi:10.1371/journal.pgen.0030082). No prior permission is required from the authors or publisher. For queries about the license, please contact the relative journal contact indicated here: http://www.plos.org/journals/embargopolicy.php
About PLoS Computational Biology
PLoS Computational Biology (www.ploscompbiol.org) features works of exceptional significance that further our understanding of living systems at all scales through the application of computational methods. All works published in PLoS Computational Biology are open access. Everything is immediately available subject only to the condition that the original authorship and source are properly attributed. Copyright is retained.
About the Public Library of Science
The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource. For more information, visit http://www.plos.org.
END
Researchers from Trinity College Dublin have uncovered the evolutionary mechanisms that have caused increases or decreases in the numbers of chromosomes in a group of yeast species during the last 100-150 million years. The study, to be published on July 21st in the open-access journal PLoS Genetics, offers an unprecedented view of chromosome complement (chromosome number) changes in a large group of related species.
A few specific cases of chromosome number changes have been studied in plants and animals, for example the fusion of two great ape chromosomes that gave ...
HOUSTON -- (July 21, 2011) -- Over millennia, mice have thrived despite humanity's efforts to keep them at bay. A Rice University scientist argues some mice have found two ways to achieve a single goal -- resistance to common poison.
New research by Michael Kohn and colleagues, reported today in the online journal Current Biology, analyzes a genetic mutation that has given the ordinary European house mouse this extraordinary ability.
The gene in question, vkorc1, is present in all mammals and manages vitamin K. A mutation to vkorc1 makes mice resistant to warfarin, ...
A new study reveals that just as different soldiers in the field have different jobs, subsets of a type of immune cell that polices the barriers of the body can promote unique and opposite immune responses against the same type of infection. The research, published online on July 21st by Cell Press in the journal Immunity, enhances our understanding of the early stages of the immune response and may have important implications for vaccinations and treatment of autoimmune diseases.
Dendritic cells serve as sentries of the immune system and are stationed at the body's ...
For the conservation of species, hostile territory might sometimes have its advantages. That's according to a study of pollen flow among trees found only in remnant patches of native Chilean forest. The data show that the pollinators those rare trees rely on can be waylaid by the abundance of resources found in agricultural lands. As a result, trees growing in native forest patches are more likely to mate successfully when separated by resource-poor pine plantations than by those more attractive farmlands.
The finding reported in the July 21st Current Biology, a Cell ...
Since the 1950s, people have tried to limit the numbers of mice and rats using a poison known as warfarin. But, over the course of evolution, those pesky rodents have found a way to make a comeback, resisting that chemical via changes to a gene involved in vitamin K recycling and blood clotting. Now, researchers reporting online on July 21 in Current Biology, a Cell Press publication, show that European mice have in some cases acquired that resistance gene in a rather unorthodox way: they got it secondhand from an Algerian mouse.
"House mice not only have become resistant ...
Chemical reactions happen all of the time: some things burn or rust, others react to light exposure--even batteries use chemical reactions to supply electricity. One of the big challenges chemists continually face is finding new ways to control these reactions or create conditions that promote desirable reactions and limit undesirable ones.
Recently, researchers at New York University demonstrated an ability to make new materials with empty space on the inside, which could potentially control desired and unwanted chemical reactions.
Mike Ward, of NYU's Department ...
Washington, D.C.—Jewelers abhor diamond impurities, but they are a bonanza for scientists. Safely encased in the super-hard diamond, impurities are unaltered, ancient minerals that can tell the story of Earth's distant past. Researchers analyzed data from the literature of over 4,000 of these mineral inclusions to find that continents started the cycle of breaking apart, drifting, and colliding about 3 billion years ago. The research, published in the July 22, 2011, issue of Science, pinpoints when this so-called Wilson cycle began.
Lead author Steven Shirey at the ...
Chemists have created a molecular polyhedron, a ground-breaking assembly that has the potential to impact a range of industrial and consumer products, including magnetic and optical materials.
The work, reported in the latest issue of the journal Science, was conducted by researchers at New York University's Department of Chemistry and its Molecular Design Institute and the University of Milan's Department of Materials Science.
Researchers have sought to coerce molecules to form regular polyhedra—three-dimensional objects in which each side, or face, is a polygon—but ...
UPTON, NY - A team of scientists studying the parent compound of a cuprate (copper-oxide) superconductor has discovered a link between two different states, or phases, of that matter - and written a mathematical theory to describe the relationship. This work, appearing in the July 22, 2011, issue of Science, will help scientists predict the material's behavior under varying conditions, and may help explain how it's transformed into a superconductor able to carry current with no energy loss.
"The ultimate goal is to use what we learn to design copper-oxide materials with ...
A new study by Harvard Medical School researchers published today [July 21] in the Annals of Emergency Medicine finds that access to outpatient psychiatric care in the greater Boston area is severely limited, even for people with reputedly excellent private health insurance. Given that the federal health law is modeled after the Massachusetts health reform, the findings have national implications, the researchers say.
Study personnel posed as patients insured by Blue Cross Blue Shield of Massachusetts PPO, the largest insurer in Massachusetts. They called every Blue Cross-contracted ...