(Press-News.org) WASHINGTON, Aug. 11—The steady improvement in speed and power of modern electronics may soon hit the brakes unless new ways are found to pack more structures into microscopic spaces. Unfortunately, engineers are already approaching the limit of what light—the choice tool for "tweezing" tiny features—can achieve. But there may be a way of reaching beyond this so-called "diffraction limit" by precisely steering, in real time, a curve-shaped beam of weird "virtual particles" known as surface plasmons.
This technique, described in the Optical Society's (OSA) journal Optics Letters, opens the possibility of even smaller, faster communications systems and optoelectronic devices. Examples of optoelectronic devices used today include photodiodes such as solar cells, integrated optical circuits used in communications, and charged coupled imaging devices at the heart of cell phone cameras and receivers on the world's most advanced telescopes. This method also may yield new, important tools for research in chemistry, biology, and medicine.
The key to this innovation is the ability—for the first time—to actively manipulate a blended stream of light and plasma, known as a plasmonic Airy beam. The beam, owing to the laws of electromagnetism, travels, not in a straight line like the beams of light to which we are accustomed, but rather in an arc. "It's an odd thing for sure, as light is supposed to travel in a straight line," says Peng Zhang a member of the research team with the National Science Foundation (NSF) Nanoscale Science and Engineering Center of the University of California, Berkeley and Department of Physics and Astronomy at San Francisco State University (SFSU). "That's why people are so crazy about these kinds of interesting beams."
As the beam first strikes a metal surface (typically at an irregular feature called a grating structure), it stirs up small waves of electrons at the metal-insulator interface. These waves, which can be thought of as "virtual particles" known as surface plasmon polaritons (SPPs), then follow the curved trajectory of the Airy beams (see Fig. 1). And, just as ocean waves move objects on the surface of the water, the SPPs can be directed to manipulate ultrafine-scale features on the surface of a metal.
SPPs are already essential elements in the design and manufacture of optoelectronic devices. The reason they're so critical is that they can affect extremely small-scale objects, smaller than the diffraction limit, or half of the wavelength of light used to create SPPs.
The current systems, however, have a significant drawback: they required fixed, permanent nanostructures to direct the SPPs. This lack of flexibility severely limits their uses in nano-system design and manufacture. But by being able to manipulate the Airy beam, and therefore the SPPs, in real time, the new design gives scientists on-the-fly control (see Fig. 2).
"We have demonstrated a new way of routing the flow of surface plasmons without any guiding structures," says Xiang Zhang, who led this research and is the director of the NSF Nanoscale Science and Engineering Center at Berkeley and a faculty scientist with the Materials Sciences Division of the Lawrence Berkeley National Laboratory.
The lack of guiding structures, according to Xiang Zhang, is the critical innovation in their design. Currently, to manipulate surface plasmons over two-dimensional metal surfaces, different elements such as waveguides, lenses, beam splitters, and reflectors need to be created. This is done by either structuring metal surfaces (fabricating some permanent nanostructures) or placing insulators on metals. These permanent guiding structures cannot be reconfigured; once the structure is fabricated it cannot be changed in real time.
By using computer-controlled optics, however, the research team has developed a way to steer and manipulate the beams, precisely directing their trajectories to specific spots on an optical surface and adjusting them as needed. Due to their unique arc-shaped paths, the beams have the added ability to bypass surface roughness and defects, or even vault over obstacles.
"These on-the-fly adjustments are extremely desirable," says Zhigang Chen, a principal investigator with the Department of Physics and Astronomy at SFSU. "They enable reconfigurable optical interconnections in ultra-compact integrated photonic circuits, which are at the core of many high-speed computing technologies. They also would enable on-chip nanoparticle manipulations for chemical, medical, or biological research purposes."
The Airy beams used to direct the flow of plasmons also remain coherent, not fanning out or distorting as they travel along their curved trajectories, much in the same way that laser light remains coherent even after traveling great distances.
To create the Airy beams, the researchers used a laser beam and modulated its phase, or wave front, with a spatial light modulator (a device similar to a miniature liquid crystal display) controlled by a personal computer. By continuously changing the specially designed patterns in the computer, they were able to dynamically control the trajectories of the beam in real time.
"These results point out a new direction for dynamically routing surface energies without any permanent guiding structures," says Peng Zhang, "which could inspire researchers from different areas to develop new technologies or tools for a variety of applications." For example, in nano-photonics, researchers may design practical reconfigurable plasmonic devices for ultra-compact integrated photonic circuits. In biology and chemistry, researchers may establish new tools for dynamically manipulating nanoparticles or molecules, and improving the performance of sensors.
"The ultrafine wavelength nature of surface plasmons makes them a promising tool for future nanolithography or nanoimaging applications," says research team member Sheng Wang, also of the NSF Nanoscale Science and Engineering Center. "Now, with the dynamic tunable plasmonic Airy beams, researchers may also shed new light on ultrahigh resolution bioimaging. For example, by bypassing obstacles and directly shining a beam on a target sample, background noise can be greatly reduced, which would enable more accurate imaging."
"This method may also encourage researchers in other fields to manipulate the surface waves in other low-dimensional systems, including graphenes, topological insulators, and magnetic thin films," says fellow team member Yongmin Liu of the NSF Nanoscale Science and Engineering Center.
INFORMATION:
This research was supported by the U.S. Army Research Office, the Air Force Office of Scientific Research, and the National Science Foundation.
The paper, titled "Plasmonic Airy beams with dynamically controlled trajectories," was authored by Peng Zhang, Sheng Wang, Yongmin Liu, Xiaobo Yin, Changgui Lu, Zhigang Chen, and Xiang Zhang. It appears in the Aug. 15 issue of Optics Letters (vol. 36, issue 16, pp. 3191-3193).
http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-36-16-3191
EDITOR'S NOTE: High-resolution images are available to reporters upon request. Contact astark@osa.org.
About Optics Letters
Published by the Optical Society (OSA), Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. This journal, edited by Alan E. Willner of the University of Southern California and published twice each month, is where readers look for the latest discoveries in optics. Visit www.OpticsInfoBase.org/OL.
About OSA
Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.
New tool may yield smaller, faster optoelectronics
Steering a beam of 'virtual particles' enables team of scientists to manipulate ultra-small-scale particles in real time
2011-08-12
ELSE PRESS RELEASES FROM THIS DATE:
Dentist in South Charlotte, NC Introduces Special Offers Via Practice Website
2011-08-12
Dr. Bateman, dentist in South Charlotte, of Bateman Family Dental is now offering patients special offers for more affordable dental care. From complimentary consultations to Invisalign, patients can receive a variety of specials to best fit their dental needs and budget.
Patients can visit the practice website for Dr. Bateman, dentist in South Charlotte, NC, to view and print various dental specials that are currently available. From the homepage, patients can simply click on the "special offers" link to find available dental deals. For those who are coming ...
Visiting researcher at IU leads international team in formal identification of new fungi class
2011-08-12
BLOOMINGTON, Ind. -- A visiting researcher from Sweden in the Indiana University College of Arts and Sciences' Biology Department has led an international team in culturing, characterizing and formally naming a new class of fungi that previously had only been identified through DNA sequencing from environmental samples.
Structures on Roots
The new fungal class Archaeorhizomyces, previously known as Soil Clone Group 1 (SCG1), has now been found in more than 50 ecological studies of soil fungi. Prior to the work reported by the team led by Swedish biologist Anna Rosling, ...
Arctic ice melt could pause for several years, then resume again
2011-08-12
BOULDER—Although Arctic sea ice appears fated to melt as the climate continues to warm, the ice may temporarily stabilize or somewhat expand at times over the next few decades, new research indicates.
The computer modeling study, by scientists at the National Center for Atmospheric Research, reinforces previous findings by other research teams that the level of Arctic sea ice loss observed in recent decades cannot be explained by natural causes alone, and that the ice will eventually disappear during summer if climate change continues.
But in an unexpected new result, ...
New research explains how estrogen could help protect women from cardiovascular disease
2011-08-12
The sex hormone oestrogen could help protect women from cardiovascular disease by keeping the body's immune system in check, new research from Queen Mary, University of London has revealed.
The study has shown that the female sex hormone works on white blood cells to stop them from sticking to the insides of blood vessels, a process which can lead to dangerous blockages.
The results could help explain why cardiovascular disease rates tend to be higher in men and why they soar in women after the menopause.
The researchers compared white blood cells from men and pre-menopausal ...
Alien world is blacker than coal
2011-08-12
Astronomers have discovered the darkest known exoplanet - a distant, Jupiter-sized gas giant known as TrES-2b. Their measurements show that TrES-2b reflects less than one percent of the sunlight falling on it, making it blacker than coal or any planet or moon in our solar system.
"TrES-2b is considerably less reflective than black acrylic paint, so it's truly an alien world," said astronomer David Kipping of the Harvard-Smithsonian Center for Astrophysics (CfA), lead author on the paper reporting the research.
In our solar system, Jupiter is swathed in bright clouds ...
Coke addicts prefer money in hand to snowy future
2011-08-12
When a research team asked cocaine addicts to choose, hypothetically, between money now or cocaine of greater value later, "preference was almost exclusively for the money now," said Warren K., Bickel, professor in the Virginia Tech Carilion Research Institute, director of the Advanced Recovery Research Center, and professor of psychology in the College of Science at Virginia Tech. This result is significantly different from previous studies where a subject chooses between some money now or more money later.
Hollywood portrays cocaine addicts as people who will do anything ...
In quest for new therapies, clinician-scientist team unlocks hidden information in human genome
2011-08-12
The work of molecular biologist Joseph M. Miano, Ph.D., and clinician Craig Benson, M.D., seems worlds apart: Miano helps head the Aab Cardiovascular Research Institute and Benson is chief resident of the combined Internal Medicine and Pediatrics program at the University of Rochester Medical Center. Though the chance of their professional paths crossing was highly unlikely, shared enthusiasm, intense curiosity and a little detective work led to a unique collaboration and important new insights on the inner workings of the human genome.
Together, Miano and Benson created ...
Training to Improve Electrical Workers Safety, Confidence and Effectiveness
2011-08-12
Critical Information Network (CiNet), LLC, announces the release of its newly updated Electrical 1 training series designed to help companies improve the electrical maintenance practices of workers and meet the demands of today's busy training manager.
According to OSHA and the National Fire Protection Association (NFPA), electrical accidents and the resulting fires cause millions of dollars in damages, countless injuries and life threatening workplace events every year. The tragedy is that many of these could have been avoided by simple maintenance repairs supported ...
Stem cell mobilization therapy found to be safe for bone marrow donors
2011-08-12
(WASHINGTON, August 11, 2011) – According to a study published in Blood, the Journal of the American Society of Hematology (ASH), researchers have reported that administration of granulocyte colony-stimulating factor (G-CSF), a drug that releases stem cells from the bone marrow into the blood, is unlikely to put healthy stem cell donors at risk for later development of abnormalities involving loss or gains of chromosomes that have been linked to hematologic disorders such as myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML).
G-CSF therapy is given to healthy ...
Heat Wave Sees Surge in Sweat Cure Enquiries
2011-08-12
While many Britons enjoyed the recent heatwave, taking the chance to lie back and top up their tans, for others it only served to heighten their fears of damp armpits and clammy hands.
As a result, Transform Cosmetic Surgery Group recorded a 45% surge in enquiries into use of BOTOX injections a treatment for excessive sweating over a three-day period of the heatwave as the nation become more perspiration-conscious.
Known as hyperhidrosis, the condition sees sweat glands become overactive, something often made worse during periods of hot weather. During the procedure, ...
LAST 30 PRESS RELEASES:
In small preliminary study, fearful pet dogs exhibited significantly different microbiomes and metabolic molecules to non-fearful dogs, suggesting the gut-brain axis might be involved in fear behavior
Examination of Large Language Model "red-teaming" defines it as a non-malicious team-effort activity to seek LLMs' limits and identifies 35 different techniques used to test them
Most microplastics in French bottled and tap water are smaller than 20 µm - fine enough to pass into blood and organs, but below the EU-recommended detection limit
A tangled web: Fossil fuel energy, plastics, and agrichemicals discourse on X/Twitter
This fast and agile robotic insect could someday aid in mechanical pollination
Researchers identify novel immune cells that may worsen asthma
Conquest of Asia and Europe by snow leopards during the last Ice Ages uncovered
Researchers make comfortable materials that generate power when worn
Study finding Xenon gas could protect against Alzheimer’s disease leads to start of clinical trial
Protein protects biological nitrogen fixation from oxidative stress
Three-quarters of medical facilities in Mariupol sustained damage during Russia’s siege of 2022
Snow leopard fossils clarify evolutionary history of species
Machine learning outperforms traditional statistical methods in addressing missing data in electronic health records
AI–guided lung ultrasound by nonexperts
Prevalence of and inequities in poor mental health across 3 US surveys
Association between surgeon stress and major surgical complications
How cryogenic microscopy could help strengthen food security
DNA damage can last unrepaired for years, changing our view of mutations
Could this fundamental discovery revolutionise fertiliser use in farming?
How one brain circuit encodes memories of both places and events
ASU-led collaboration receives $11.2 million to build a Southwest Regional Direct Air Capture Hub
Study finds strategies to minimize acne recurrence after taking medication for severe acne
Deep learning designs proteins against deadly snake venom
A new geometric machine learning method promises to accelerate precision drug development
Ancient genomes reveal an Iron Age society centred on women
How crickets co-exist with hostile ant hosts
Tapered polymer fibers enhance light delivery for neuroscience research
Syracuse University’s Fran Brown named Paul “Bear” Bryant Newcomer Coach of the Year Award recipient
DARPA-ABC program supports Wyss Institute-led collaboration toward deeper understanding of anesthesia and safe drugs enabling anesthesia without the need for extensive monitoring
The Offshore Wind Innovation Hub 2025 call for innovators opens today
[Press-News.org] New tool may yield smaller, faster optoelectronicsSteering a beam of 'virtual particles' enables team of scientists to manipulate ultra-small-scale particles in real time