(Press-News.org) ITHACA, N.Y. – In things thick and thin: Cornell physicists explain how fluids – such as paint or paste - behave by observing how micron-sized suspended particles dance in real time. Using high-speed microscopy, the scientists unveil how these particles are responding to fluid flows from shear – a specific way of stirring. (Science, Sept. 2).
Observations by Xiang Cheng, Cornell post-doctoral researcher in physics and Itai Cohen, Cornell associate professor of physics, are the first to link direct imaging of the particle motions with changes in liquid viscosity.
Combining high-speed 3-D imaging techniques with a sensitive force-measuring device, the researchers tracked the motions of tiny particles suspended in the fluids while monitoring the thinning or thickening behaviors under shear.
They found that fluids become thinner when the particles — which normally move in a random way — get swept by the induced fluid flows.
In addition, they showed fluids became thicker or more viscous when particles were driven past one another too quickly for the fluid between them to drain or get out of the way. At such high speeds, the particles form clusters that lock together and make the fluid more viscous.
Grasping the physics of shear thinning and thickening isn't just good for at-home science experiments, knowledge of fluid phenomena are important for commerce. "In industry, understanding the thinning and thickening of materials is crucial for almost any transport process," Cohen said. These findings will improve the ability of scientists and engineers to handle complex fluids ranging from such industrial materials as paints, detergents and pastes, as well as such biological liquids as lymph and blood.
The researchers' observations refute theories that such changes in fluid viscosity result from the formation and destruction of particle layers under shear. The idea behind these theories is that, like lanes on a highway, streamlining particle trajectories reduces random collisions and enables particles to flow past each other more smoothly. When the particles form layers at low shear rates, the viscosity decreases, causing the fluid to thin; when the particle layers break up at high shear rates, the viscosity increases, causing the fluid to thicken.
However, by directly imaging the layering and measuring the fluid viscosity, the Cornell scientists found that while the amount of layering and delayering was comparable, the changes in viscosity were substantially different in the thinning and thickening regimes.
Moreover, the delayering occurred at shear rates much lower than those leading to thickening. Hence, they produced evidence that layering is not the major reason for viscosity changes in these suspensions.
###
The research article, "Imaging the microscopic structure of shear thinning and thickening colloidal suspensions," is published in Science (Sept. 2, 2011). In addition to Cheng and Cohen, co-authors include: Jonathan H. McCoy, Colby College, Waterville, Maine; and Jacob N. Israelachvili, University of California, Santa Barbara.
The work was supported by the National Science Foundation, King Abdullah University of Science and Technology and the U.S. Department of Energy.
HOUSTON -- Chromatin - the intertwined histone proteins and DNA that make up chromosomes – constantly receives messages that pour in from a cell’s intricate signaling networks: Turn that gene on. Stifle that one.
But chromatin also talks back, scientists at The University of Texas MD Anderson Cancer Center report today in the journal Cell, issuing orders affecting a protein that has nothing to do with chromatin's central role in gene transcription - the first step in protein formation.
"Our findings indicate chromatin might have another life as a direct signaling molecule, ...
The American Thoracic Society has issued the first-ever guidelines on the use of fractional exhaled nitric oxide (FENO) that address when to use FENO and how to interpret FENO levels in different clinical settings. The guidelines, which appear in the September 1 American Journal of Respiratory and Critical Care Medicine, are graded based on the available evidence in the literature.
"There are existing guidelines to measure FENO but none to interpret the results," noted Raed A. Dweik, MD, chair of the guideline writing committee and professor of medicine and director ...
Each taste, from sweet to salty, is sensed by a unique set of neurons in the brains of mice, new research reveals. The findings demonstrate that neurons that respond to specific tastes are arranged discretely in what the scientists call a "gustotopic map." This is the first map that shows how taste is represented in the mammalian brain.
There's no mistaking the sweetness of a ripe peach for the saltiness of a potato chip – in part due to highly specialized, selectively-tuned cells in the tongue that detect each unique taste. Now, Howard Hughes Medical Institute and NIH ...
BEER-SHEVA, ISRAEL, September 1, 2011— A Ben-Gurion University of the Negev research group led by Prof. Ohad Birk has identified a gene whose defect specifically causes myopia or nearsightedness.
In an article appearing online in the American Journal of Human Genetics today, Birk and his team reveal that a mutation in LEPREL1 has been shown to cause myopia.
"We are finally beginning to understand at a molecular level why nearsightedness occurs," Prof. Birk says. The discovery was a group effort at BGU's Morris Kahn Laboratory of Human Genetics at the National Institute ...
Our brain is divided into two hemispheres, which are linked through only a few connections. However, we do not seem to have a problem to create a coherent image of our environment – our perception is not "split" in two halves. For the seamless unity of our subjective experience, information from both hemispheres needs to be efficiently integrated. The corpus callosum, the largest fibre bundle connecting the left and right side of our brain, plays a major role in this process. Researchers from the Max Planck Institute for Brain Research in Frankfurt investigated whether ...
Children who go through puberty at a faster rate are more likely to act out and to suffer from anxiety and depression, according to a study by researchers at Penn State, Duke University and the University of California, Davis. The results suggest that primary care providers, teachers and parents should look not only at the timing of puberty in relation to kids' behavior problems, but also at the tempo of puberty -- how fast or slow kids go through puberty.
"Past work has examined the timing of puberty and shown the negative consequences of entering puberty at an early ...
Teacher, pilot, nurse or engineer? Sex hormones strongly influence people's interests, which affect the kinds of occupations they choose, according to psychologists.
"Our results provide strong support for hormonal influences on interest in occupations characterized by working with things versus people," said Adriene M. Beltz, graduate student in psychology, working with Sheri A. Berenbaum, professor of psychology and pediatrics, Penn State.
Berenbaum and her team looked at people's interest in occupations that exhibit sex differences in the general population and ...
In the first long-term study of the health impacts of the World Trade Center (WTC) collapse on September 11, 2001, researchers at The Mount Sinai Medical Center in New York have found substantial and persistent mental and physical health problems among 9/11 first responders and recovery workers. The data are published this week in a special 9/11 issue of the medical journal Lancet.
The Mount Sinai World Trade Center Clinical Center of Excellence and Data Center evaluated more than 27,000 police officers, construction workers, firefighters, and municipal workers over the ...
VIDEO:
This video uses animation to piece together cryotomograms of Acetonema longum cells at different stages of the sporulation process. Cryotomograms appear in black and white. Inner membranes are shown in...
Click here for more information.
PASADENA, Calif.—Bacteria can generally be divided into two classes: those with just one membrane and those with two. Now researchers at the California Institute of Technology (Caltech) have used a powerful imaging technique to find ...
Almost two years ago Rainer Blatt's and Christan Roos' research groups from the University of Innsbruck recreated the properties of a particle moving close to speed of light in a quantum system. They encoded the state of the particle into a highly cooled calcium atom and used lasers to manipulate it according to equations proposed by the famous quantum physicist Paul Dirac. Thereby, the scientists were able to simulate so called Zitterbewegung (quivering motion) of relativistic particles, which had never been observed directly in nature before. In the current work, the ...