(Press-News.org) New details about the birth of a famous black hole that took place millions of years ago have been uncovered, thanks to a team of scientists who used data from NASA's Chandra X-ray Observatory as well as from radio, optical and other X-ray telescopes.
Over three decades ago, Stephen Hawking placed -- and eventually lost – a bet against the existence of a black hole in Cygnus X-1. Today, astronomers are confident the Cygnus X-1 system contains a black hole, and with these latest studies they have remarkably precise values of its mass, spin, and distance from Earth. With these key pieces of information, the history of the black hole has been reconstructed.
"This new information gives us strong clues about how the black hole was born, what it weighed and how fast it was spinning," said author Mark Reid of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. "This is exciting because not much is known about the birth of black holes."
Reid led one of three papers -- all appearing in the November 10th issue of The Astrophysical Journal -- describing these new results on Cygnus X-1. The other papers were led by Jerome Orosz from San Diego State University and Lijun Gou, also from CfA.
Cygnus X-1 is a so-called stellar-mass black hole, a class of black holes that comes from the collapse of a massive star. The black hole is in close orbit with a massive, blue companion star.
Using X-ray data from Chandra, the Rossi X-ray Timing Explorer, and the Advanced Satellite for Cosmology and Astrophysics, a team of scientists was able to determine the spin of Cygnus X-1 with unprecedented accuracy, showing that the black hole is spinning at very close to its maximum rate. Its event horizon -- the point of no return for material falling towards a black hole -- is spinning around more than 800 times a second.
An independent study that compared the evolutionary history of the companion star with theoretical models indicates that the black hole was born some 6 million years ago. In this relatively short time (in astronomical terms), the black hole could not have pulled in enough gas to ramp up its spin very much. The implication is that Cygnus X-1 was likely born spinning very quickly.
Using optical observations of the companion star and its motion around its unseen companion, the team made the most precise determination ever for the mass of Cygnus X-1, of 14.8 times the mass of the Sun. It was likely to have been almost this massive at birth, because of lack of time for it to grow appreciably.
"We now know that Cygnus X-1 is one of the most massive stellar black holes in the Galaxy," said Orosz. "And, it's spinning as fast as any black hole we've ever seen."
Knowledge of the mass, spin and charge gives a complete description of a black hole, according to the so-called "No Hair" theorem. This theory postulates that all other information aside from these parameters is lost for eternity behind the event horizon. The charge for an astronomical black hole is expected to be almost zero, so only the mass and spin are needed.
"It is amazing to me that we have a complete description of this asteroid-sized object that is thousands of light years away," said Gou. "This means astronomers have a more complete understanding of this black hole than any other in our Galaxy."
The team also announced that they have made the most accurate distance estimate yet of Cygnus X-1 using the National Radio Observatory's Very Long Baseline Array (VLBA). The new distance is about 6,070 light years from Earth. This accurate distance was a crucial ingredient for making the precise mass and spin determinations.
The radio observations also measured the motion of Cygnus X-1 through space, and this was combined with its measured velocity to give the three-dimensional velocity and position of the black hole.
This work showed that Cygnus X-1 is moving very slowly with respect to the Milky Way, implying it did not receive a large "kick" at birth. This supports an earlier conjecture that Cygnus X-1 was not born in a supernova, but instead may have resulted from the dark collapse of a progenitor star without an explosion. The progenitor of Cygnus X-1 was likely an extremely massive star, which initially had a mass greater than about 100 times the sun before losing it in a vigorous stellar wind.
In 1974, soon after Cygnus X-1 became a good candidate for a black hole, Stephen Hawking placed a bet with fellow astrophysicist Kip Thorne, a professor of theoretical physics at the California Institute of Technology, that Cygnus X-1 did not contain a black hole. This was treated as an insurance policy by Hawking, who had done a lot of work on black holes and general relativity.
By 1990, however, much more work on Cygnus X-1 had strengthened the evidence for it being a black hole. With the help of family, nurses, and friends, Hawking broke into Thorne's office, found the framed bet, and conceded.
"For forty years, Cygnus X-1 has been the iconic example of a black hole. However, despite Hawking's concession, I have never been completely convinced that it really does contain a black hole -- until now," said Thorne. "The data and modeling described in these three papers at last provide a completely definitive description of this binary system."
INFORMATION:
NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.
NASA's Chandra adds to black hole birth announcement
2011-11-21
ELSE PRESS RELEASES FROM THIS DATE:
VLBA observations key to 'complete description' of black hole
2011-11-21
For the first time, astronomers have produced a complete description of a black hole, a concentration of mass so dense that not even light can escape its powerful gravitational pull. Their precise measurements have allowed them to reconstruct the history of the object from its birth some six million years ago.
Using several telescopes, both ground-based and in orbit, the scientists unravelled longstanding mysteries about the object called Cygnus X-1, a famous binary-star system discovered to be strongly emitting X-rays nearly a half-century ago. The system consists of ...
Study of flower petals shows evolution at the cellular level
2011-11-21
A new study of flower petals shows evolution in action, and contradicts more that 60 years of scientific thought.
The findings are reported by a scientist from UC Santa Barbara and a research team from Harvard University in the Proceedings of the Royal Society B this week.
Columbine flowers, known as Aquilegia, evolved several lengths of petal spurs that match the tongue lengths of their pollinators, including bees, hummingbirds, and hawkmoths. The petal spurs are shaped like a tubular pocket and contain nectar at the tip. The spurs grow from 1 to 16 centimeters in ...
Molecules on branched-polymer surfaces can capture rare tumor cells in blood
2011-11-21
The removal of rare tumor cells circulating in the blood might be possible with the use of biomolecules bound to dendrimers, highly branched synthetic polymers, which could efficiently sift and capture the diseased cells, according to new research at the University of Illinois at Chicago.
Dendrimers have been used to encapsulate drug molecules and serve as a delivery vehicle, but in the new study they were employed to capture circulating tumor cells by biomimicry -- using nanotechnology to create artificial surfaces much like those in real cells.
"We want to take advantage ...
US preterm birth rate under 12 percent, the lowest level in nearly a decade
2011-11-21
WHITE PLAINS, N.Y., Nov. 17, 2011 – The nation's preterm birth rate slipped under 12 percent for the first time in nearly a decade, the fourth consecutive year it declined, potentially sparing tens of thousands of babies the serious health consequences of an early birth.
The national preterm birth rate declined to 11.99 percent last year, according to the National Center for Health Statistics, which released its report "Births: Preliminary Data for 2010," today, the first-ever World Prematurity Day. Despite the improvement, still too many babies, one out of every eight, ...
Study: Ozone from rock fracture could serve as earthquake early warning
2011-11-21
Researchers the world over are seeking reliable ways to predict earthquakes, focusing on identifying seismic precursors that, if detected early enough, could serve as early warnings.
New research, published this week in the journal Applied Physics Letters, suggests that ozone gas emitted from fracturing rocks could serve as an indicator of impending earthquakes. Ozone is a natural gas, a byproduct of electrical discharges into the air from several sources, such as from lightning, or, according to the new research, from rocks breaking under pressure.
Scientists in the ...
Study explains how heart attack can lead to heart rupture
2011-11-21
For people who initially survive a heart attack, a significant cause of death in the next few days is cardiac rupture -- literally, bursting of the heart wall.
A new study by University of Iowa researchers pinpoints a single protein as the key player in the biochemical cascade that leads to cardiac rupture. The findings, published Nov. 13 as an Advance Online Publication (AOP) of the journal Nature Medicine, suggest that blocking the action of this protein, known as CaM kinase, may help prevent cardiac rupture and reduce the risk of death.
After a heart attack, the ...
Multidisciplinary team of researchers develop world’s lightest material
2011-11-21
Irvine, Calif., Nov. 17, 2011 – A team of researchers from UC Irvine, HRL Laboratories and the California Institute of Technology have developed the world's lightest material – with a density of 0.9 mg/cc – about 100 times lighter than Styrofoam. Their findings appear in the Nov. 18 issue of Science.
The new material redefines the limits of lightweight materials because of its unique "micro-lattice" cellular architecture. The researchers were able to make a material that consists of 99.99 percent air by designing the 0.01 percent solid at the nanometer, micron and millimeter ...
NIH-funded scientists identify potential malaria drug candidates
2011-11-21
Caused by four related parasites in the genus Plasmodium, malaria is transmitted to humans via the bite of an infected mosquito. Once the bite occurs, the parasites travel to the liver, where they usually multiply rapidly for about a week without causing symptoms. Symptoms begin when the parasites spread from the liver to the rest of the body through the bloodstream. However, the parasites can lay dormant in the liver for periods ranging from several months to years before an infected person demonstrates symptoms.
Most of the malaria drugs currently in development target ...
Soybean adoption came early by many cultures, archaeologists say
2011-11-21
EUGENE, Ore. -- Human domestication of soybeans is thought to have first occurred in central China some 3,000 years ago, but archaeologists now suggest that cultures in even earlier times and in other locations adopted the legume (Glycine max).
Comparisons of 949 charred soybean samples from 22 sites in northern China, Japan and South Korea -- found in ancient households including hearths, flooring and dumping pits -- with 180 modern charred and unburned samples were detailed in the Nov. 4 edition of the online journal PLoS ONE, a publication of the Public Library ...
What bacteria don't know can hurt them
2011-11-21
Many infections, even those caused by antibiotic-sensitive bacteria, resist treatment. This paradox has vexed physicians for decades, and makes some infections impossible to cure.
A key cause of this resistance is that bacteria become starved for nutrients during infection. Starved bacteria resist killing by nearly every type of antibiotic, even ones they have never been exposed to before.
What produces starvation-induced antibiotic resistance, and how can it be overcome? In a paper appearing this week in Science, researchers report some surprising answers.
"Bacteria ...