(Press-News.org) The communities of marine microorganisms that make up half the biomass in the oceans and are responsible for half the photosynthesis the world over, mostly remain enigmatic. A few abundant groups have had their genomes described, but the natures and functions of the rest remain mysterious.
Understanding how the changing global environment might affect these important ecosystem players is like trying to understand the solar system when all you can discern are the brightest objects in the sky.
Now University of Washington scientists have advanced a method that allowed them to single out a marine microorganism and map its genome even though the organism made up less than 10 percent of a water sample teeming with many millions of individuals from dozens of identifiable groups of microbes.
Typically researchers have had to isolate an organism and culture it in a lab before they could begin to crack its genome.
"We've done the opposite," said Vaughn Iverson, a UW doctoral student in oceanography and lead author of a report in the Feb. 2 issue of the journal Science.
"We went to the environment, didn't make any attempt to isolate any of the organisms in a laboratory sense and, instead, extracted the DNA from everything in the sample," he said. "It's a technique known as metagenomics. The UW's innovation was to develop computational methods to simultaneously sequence all the parts and then reconstruct the chosen genome."
The researchers determined the genome of a member of the marine group II Euryarchaeota, something that has defied investigators since those microorganisms were first detected about a decade ago. They are found widely across the world's oceans so – although not always abundant – biologists assume they have some important function, said Virginia Armbrust, UW professor of oceanography and corresponding author on the Science paper. The resulting genome offers hints that Euryarchaeota might serve as a kind of cleanup crew after diatoms, another ocean microorganism, bloom and die.
"Ocean microorganisms are regulators of large biogeochemical cycles so we need to understand the different members of those communities," Armbrust said. "As we change coastal communities – for better or for worse – we need to understand the players that are there."
The genome also clarified the origin of a gene that allows marine group II Euryarchaeota, as well as many marine bacteria, to harvest energy directly from sunlight, with no photosynthesis involved.
The approach advanced by the UW team isn't just useful for studying microorganisms in the oceans, but also for those found in soils and algal communities with potential for biofuels, or for understanding emerging strains of antibiotic-resistant bacteria that threaten human or animal health, Iverson said. The UW approach takes less time and money.
"Having to culture things to sequence them is an extra step and time consuming if they're difficult to culture," he said. "It becomes a chicken and egg problem. If you have never been able to study it, you don't know what it needs. But in order to study it, you must provide the environment in the lab that it requires."
"If microbiologists can get the DNA directly and sequence it without having to culture it, that's a big advantage."
Metagenomics – extracting DNA from whole microbial communities and sequencing it to reveal genes – has been used for about a decade with marine microorganisms. Sequencing equipment and methods have leapt forward since then, thanks to many researchers and companies, the UW scientists said.
But previous techniques allowed scientists to reconstruct an organism's genome only if the organism made up a third or more of a sample. The UW team showed how to construct the genome of marine group II Euryarchaeota even though it comprised only 7 percent of the cells found in 100 liters of water from Puget Sound near Seattle.
The sample was analyzed using equipment purchased with funding to Armbrust from the Gordon and Betty Moore Foundation, which also paid for Iverson's work. The project was conducted in labs run by Armbrust and co-author Robert Morris, a UW assistant professor of oceanography. Other co-authors are Christian Frazar, Chris Berthiaume and Rhonda Morales, all with the UW.
"Now you can afford to get things that are a much smaller fraction of your overall sample," Iverson said. "That's what's really new – to assemble something with a genome that is not closely related to anything else that is known, so there are no templates or references to work from, and to discern organisms making up less than10 percent of a sample from a complex community."
INFORMATION:
For more information:
Armbrust, 206-616-1783, 206-616-1570, armbrust@ocean.washington.edu
Iverson, 206-221-7146, vsi@uw.edu
Scientists coax shy microorganisms to stand out in a crowd
2012-02-06
ELSE PRESS RELEASES FROM THIS DATE:
Football findings suggest concussions caused by series of hits
2012-02-06
WEST LAFAYETTE, Ind. - A two-year study of high school football players suggests that concussions are likely caused by many hits over time and not from a single blow to the head, as commonly believed.
Purdue University researchers have studied football players for two seasons at Jefferson High School in Lafayette, Ind., where 21 players completed the study the first season and 24 the second season, including 16 repeating players.
Helmet-sensor impact data from each player were compared with brain-imaging scans and cognitive tests performed before, during and after each ...
New RNA-based therapeutic strategies for controlling gene expression
2012-02-06
New Rochelle, NY, February 2, 2012—Small RNA-based nucleic acid drugs represent a promising new class of therapeutic agents for silencing abnormal or overactive disease-causing genes, and researchers have discovered new mechanisms by which RNA drugs can control gene activity. A comprehensive review article in Nucleic Acid Therapeutics, a peer-reviewed journal published by Mary Ann Liebert, Inc., details these advances.
Short strands of nucleic acids, called small RNAs, can be used for targeted gene silencing, making them attractive drug candidates. These small RNAs ...
Hubble zooms in on a magnified galaxy
2012-02-06
Thanks to the presence of a natural "zoom lens" in space, NASA's Hubble Space Telescope got a uniquely close-up look at the brightest "magnified" galaxy yet discovered.
This observation provides a unique opportunity to study the physical properties of a galaxy vigorously forming stars when the universe was only one-third its present age.
A so-called gravitational lens is produced when space is warped by a massive foreground object, whether it is the sun, a black hole or an entire cluster of galaxies. The light from more-distant background objects is distorted, brightened ...
'First light' taken by NASA's newest CERES instrument
2012-02-06
The doors are open on NASA's Suomi NPP satellite and the newest version of the Clouds and the Earth's Radiant Energy System (CERES) instrument is scanning Earth for the first time, helping to assure continued availability of measurements of the energy leaving the Earth-atmosphere system.
The CERES results help scientists to determine the Earth's energy balance, providing a long-term record of this crucial environmental parameter that will be consistent with those of its predecessors.
CERES arrived in space Oct. 28, 2011, carried by NASA's newest Earth-observing satellite, ...
NASA satellites see wind shear battering Tropical Depression Iggy
2012-02-06
NASA satellites have watched as wind shear has torn Cyclone Iggy apart over the last day. NASA infrared satellite imagery showed that Iggy's strongest thunderstorms have been pushed away from the storm's center and visible imagery shows the storm is being stretched out. Iggy is weakening and heading for a landfall between Geraldton and Perth.
When NASA's Aqua satellite passed over Tropical Cyclone Iggy on Feb. 1 at 1805 UTC (1:05 p.m. EST), the Atmospheric Infrared Sounder (AIRS) instrument aboard captured an infrared look at the cyclone. AIRS data showed that the strongest ...
A battle of the vampires, 20 million years ago?
2012-02-06
CORVALLIS, Ore. – They are tiny, ugly, disease-carrying little blood-suckers that most people have never seen or heard of, but a new discovery in a one-of-a-kind fossil shows that "bat flies" have been doing their noxious business with bats for at least 20 million years.
For bats, that's a long time to deal with a parasite doing its best vampire impression. Maybe it is nature's revenge on the vampire bat, an aggressive blood consumer in its own right that will feed on anything from sheep to dogs and humans.
The find was made by researchers from Oregon State University ...
Breastfeeding and lung function at school age: Does maternal asthma modify the effect?
2012-02-06
Breastfeeding is associated with improved lung function at school age, particularly in children of asthmatic mothers, according to a new study from researchers in Switzerland and the UK.
"In our cohort of school age children, breastfeeding was associated with modest improvement in forced mid-expiratory flow (FEF50) in our whole group and with improvements in forced vital capacity (FVC) and forced expiratory volume at 1 second (FEV1) only in the children of asthmatic mothers," said Claudia E. Kuehni, MD, MSc, professor at the Institute of Social and Preventive Medicine ...
Classic portrait of a barred spiral galaxy
2012-02-06
Most spiral galaxies in the Universe have a bar structure in their centre, and Hubble's image of NGC 1073 offers a particularly clear view of one of these. Galaxies' star-filled bars are thought to emerge as gravitational density waves funnel gas toward the galactic centre, supplying the material to create new stars. The transport of gas can also feed the supermassive black holes that lurk in the centres of almost every galaxy.
Some astronomers have suggested that the formation of a central bar-like structure might signal a spiral galaxy's passage from intense star-formation ...
New procedure repairs severed nerves in minutes, restoring limb use in days or weeks
2012-02-06
American scientists believe a new procedure to repair severed nerves could result in patients recovering in days or weeks, rather than months or years. The team used a cellular mechanism similar to that used by many invertebrates to repair damage to nerve axons. Their results are published today in the Journal of Neuroscience Research.
"We have developed a procedure which can repair severed nerves within minutes so that the behavior they control can be partially restored within days and often largely restored within two to four weeks," said Professor George Bittner from ...
New technique dissolves blood clots in the brain and lowers risk of brain damage after stroke
2012-02-06
Johns Hopkins neurologists report success with a new means of getting rid of potentially lethal blood clots in the brain safely without cutting through easily damaged brain tissue or removing large pieces of skull. The minimally invasive treatment, they report, increased the number of patients with intracerebral hemorrhage (ICH) who could function independently by 10 to 15 percent six months following the procedure.
At the International Stroke Conference taking place January 31 through February 2 in New Orleans, the researchers will present their findings from 93 patients, ...