(Press-News.org) A team of Australian scientists has bred salt tolerance into a variety of durum wheat that shows improved grain yield by 25% on salty soils.
Using 'non-GM' crop breeding techniques, scientists from CSIRO Plant Industry have introduced a salt-tolerant gene into a commercial durum wheat, with spectacular results shown in field tests. Researchers at the University of Adelaide's Waite Research Institute have led the effort to understand how the gene delivers salinity tolerance to the plants.
The research is the first of its kind in the world to fully describe the improvement in salt tolerance of an agricultural crop - from understanding the function of the salt-tolerant genes in the lab, to demonstrating increased grain yields in the field.
The results are published today in the journal Nature Biotechnology. The paper's senior author is Dr Matthew Gilliham from the University's Waite Research Institute and the ARC Centre of Excellence in Plant Energy Biology. Lead authors are CSIRO Plant Industry scientists Dr Rana Munns and Dr Richard James and University of Adelaide student Bo Xu.
"This work is significant as salinity already affects over 20% of the world's agricultural soils, and salinity poses an increasing threat to food production due to climate change," Dr Munns says.
Dr Gilliham says: "Salinity is a particular issue in the prime wheat-growing areas of Australia, the world's second-largest wheat exporter after the United States. With global population estimated to reach nine billion by 2050, and the demand for food expected to rise by 100% in this time, salt-tolerant crops will be an important tool to ensure future food security."
Domestication and breeding has narrowed the gene pool of modern wheat, leaving it susceptible to environmental stress. Durum wheat, used for making such food products as pasta and couscous, is particularly susceptible to soil salinity.
However, the authors of this study realised that wild relatives of modern-day wheat remain a significant source of genes for a range of traits, including salinity tolerance. They discovered the new salt-tolerant gene in an ancestral cousin of modern-day wheat, Triticum monococcum.
"Salty soils are a major problem because if sodium starts to build up in the leaves it will affect important processes such as photosynthesis, which is critical to the plant's success," Dr Gilliham says.
"The salt-tolerant gene (known as TmHKT1;5-A) works by excluding sodium from the leaves. It produces a protein that removes the sodium from the cells lining the xylem, which are the 'pipes' plants use to move water from their roots to their leaves," he says.
Dr James, who led the field trials, says: "While most studies only look at performance under controlled conditions in a laboratory or greenhouse, this is the first study to confirm that the salt-tolerant gene increases yields on a farm with saline soils.
Field trials were conducted at a variety of sites across Australia, including a commercial farm in northern New South Wales.
"Importantly, there was no yield penalty with this gene," Dr James says.
"Under standard conditions, the wheat containing the salt-tolerance gene performed the same in the field as durum that did not have the gene. But under salty conditions, it outperformed its durum wheat parent, with increased yields of up to 25%.
"This is very important for farmers, because it means they would only need to plant one type of seed in a paddock that may have some salty sections," Dr James says.
"The salt-tolerant wheat will now be used by the Australian Durum Wheat Improvement Program (ADWIP) to assess its impact by incorporating this into recently developed varieties as a breeding line."
Dr Munns says new varieties of salt-tolerant durum wheat could be a commercial reality in the near future.
"Although we have used molecular techniques to characterise and understand the salt-tolerant gene, the gene was introduced into the durum wheat through 'non-GM' breeding processes. This means we have produced a novel durum wheat that is not classified as transgenic, or 'GM', and can therefore be planted without restriction," she says.
The researchers are also taking their work a step further and have now crossed the salt-tolerance gene into bread wheat. This is currently being assessed under field conditions.
This research is a collaborative project between CSIRO, NSW Department of Primary Industries, University of Adelaide, the Australian Centre for Plant Functional Genomics and the ARC Centre of Excellence in Plant Energy Biology. It is supported by the Grains Research and Development Corporation (GRDC) and Australian Research Council (ARC).
INFORMATION: END
The Greenland ice sheet is likely to be more vulnerable to global warming than previously thought. The temperature threshold for melting the ice sheet completely is in the range of 0.8 to 3.2 degrees Celsius global warming, with a best estimate of 1.6 degrees above pre-industrial levels, shows a new study by scientists from the Potsdam Institute for Climate Impact Research (PIK) and the Universidad Complutense de Madrid. Today, already 0.8 degrees global warming has been observed. Substantial melting of land ice could contribute to long-term sea-level rise of several meters ...
In a study released today in Nature Genetics, researchers have found that Chlamydia has evolved more actively than was previously thought. Using whole genome sequencing the researchers show that the exchange of DNA between different strains of Chlamydia to form new strains is much more common than expected.
The team highlights that current clinical testing methods do not capture the variation between Chlamydia strains. Changes to the genome structure are not the aim of current diagnostics for Chlamydia. The researchers are working with hospitals to use their results ...
Hospitals in Arizona and across the country are burying their mistakes, according to a new study recently released by U.S. Department of Health and Human Services Inspector General Daniel R. Levinson. The study found that 15,000 Medicare patients die every month in part due to inadequate treatment in hospitals. The types of medical malpractice detailed in the study are gruesome and include surgical fires, objects left inside patients after surgery and surgeries performed on the wrong patients. If your loved one has died due to hospital negligence, you need to speak with ...
Researchers from Queen Mary, University of London and the University of Surrey have found a protein inside blood vessels with an ability to protect the body from substances which cause cardiovascular disease.
The findings, published online in the journal Cardiovascular Research, have revealed the protein protein pregnane X receptor (PXR) can switch on different protective pathways in the blood vessels.
Co-author Dr David Bishop-Bailey, based at Queen Mary's William Harvey Research Institute, said they found the protein was able to sense a wide variety of drugs, foreign ...
NEW YORK, NY -- A study by Columbia researchers suggests that cells in the patient's intestine could be coaxed into making insulin, circumventing the need for a stem cell transplant. Until now, stem cell transplants have been seen by many researchers as the ideal way to replace cells lost in type I diabetes and to free patients from insulin injections.
The research—conducted in mice—was published 11 March 2012 in the journal Nature Genetics.
Type I diabetes is an autoimmune disease that destroys insulin-producing cells in the pancreas. The pancreas cannot replace these ...
Medical professionals have long thought that traumatic brain injuries do not affect young children as significantly as they do adults. Two new studies, however, suggest otherwise. Young children suffering from severe traumatic brain injuries (TBI) may actually suffer continued impairment later in life than experts first thought.
The studies yielded important new information on childhood traumatic brain injuries. Children who suffered severe traumatic brain injuries, for example, had slower intellectual functioning, showing that the traumatic brain injury may have affected ...
A retinoid called all-trans retinoic acid (ATRA), which is a vitamin A-derivative, is already used successfully to treat a rare sub-type of acute myeloid leukemia (AML), however this drug has not been effective for the more common types of AMLs.
Team leader Arthur Zelent, Ph.D., and colleagues at the ICR have been working to unlock the potential of retinoids to treat other patients with AML. In a paper published in Nature Medicine today, they show that the key could be an antidepressant called tranylcypromine (TCP).
"Retinoids have already transformed one rare type ...
The newly renovated Comfort Inn & Conference Center Northeast in Atlanta, near Doraville, offers special rates to fans attending the 2012 NCAA South Regional Men's Basketball Tournament at the Georgia Dome in downtown Atlanta, GA. The Road to the Final Four , the NCAA South Regional (Division I) tournament will be held from March 23 - 25, 2012. Featuring the NCAA "Sweet 16 " and "Elite Eight " Rounds of the NCAA Tournament, this year's winner of the two-day event will be awarded a spot in the 2012 NCAA Final FOUR that will be held in New Orleans.
Located ...
Sheraton Atlanta Perimeter Hotel North, located in Sandy Springs, GA near Atlanta Perimeter Center, announces a new special savings package. Travelers can enjoy luxury for less with this exclusive offer for members of the Starwood Preferred Guest program. Book weekend stays now through March 31, 2013 and enjoy:
- Up to 35% off Best Available rates
- Continental breakfast for two
Reference rate plan SPG35B. Offer is subject to availability; some restrictions may apply.
"Conveniently situated only 15 miles north of downtown Atlanta and near many of the areas points ...
Peritectic solidification involves the nucleation and growth of the primary phase, the peritectic reaction of the primary phase with the remnant liquid phase, and the microstructural evolution of the product peritectic phase. It provides an effective approach for the synthesis or processing of various kinds of advanced materials. Professor WEI Bingbo and his group from the Department of Applied Physics, Northwestern Polytechnical University (NPU), in Xi'an, China, have demonstrated novel dual solidification mechanisms for a ternary Fe47.5Cu47.5Sn5 peritectic-type alloy. ...