PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Study finds protective gene in fat cells

Discovery may be a potential therapeutic for Type 2 diabetes

2012-04-02
(Press-News.org) BOSTON -- In a finding that may challenge popular notions of body fat and health, researchers at Beth Israel Deaconess Medical Center (BIDMC) have shown how fat cells can protect the body against diabetes. The results may lead to a new therapeutic strategy for preventing and treating type 2 diabetes and obesity-related metabolic diseases, the authors say.

In the last decade, several research groups have shown that fat cells in people play a major role in controlling healthy blood sugar and insulin levels throughout the body. To do this crucial job, fat cells need a small portion of the sugars derived from food. Obesity often reduces the dedicated sugar transport molecules on fat cells, blocking the glucose from entering fat cells. As a result, the whole body becomes insulin resistant, and blood sugar rises, leading to diabetes.

The new study shows why glucose is so important to fat cells. The team discovered a new version of a gene inside fat cells that responds to sugar with a powerful systemic effect.

"If we change that one gene, that makes the animal more prone to or more protected from diabetes," said senior author Barbara Kahn MD, the George R. Minot Professor of Medicine at Harvard Medical School and Vice Chair of the Department of Medicine at BIDMC. "Many foods get converted into sugar, so there is no need to eat more sugar."

The paper is published online April 1 in the journal Nature. In the study, the BIDMC researchers pinpointed the fat gene and its effect in mouse models of human obesity and insulin resistance and reported supporting evidence from fat tissue samples from both lean and obese people.

"Two things were surprising – first, that a lone gene could shift the metabolism of the fat cell so dramatically and then, that turning on this master switch selectively in adipose tissue is beneficial to the whole body," Kahn said. Twelve years ago, Kahn first demonstrated that fat cells are a master regulator of healthy levels of glucose and insulin in mice and require sugar to do the job.

"The general concept of fat as all bad is not true," said first author Mark Herman MD, an investigator in the Division of Endocrinology, Diabetes and Metabolism at BIDMC and Instructor of Medicine at Harvard Medical School (HMS). "Obesity is commonly associated with metabolic dysfunction that puts people at higher risk for diabetes, stroke and heart disease, but there is a large percentage of obese people who are metabolically healthy. We started with a mouse model that disassociates obesity from its adverse effects."

In the latest study, evidence suggests the newfound gene also may account for the protective effect of glucose uptake in human fat. German collaborators found more gene activity in people with greater insulin sensitivity, based on 123 adipose tissue samples from non-diabetic, glucose tolerant people. The fat gene activity also correlated highly with insulin sensitivity in obese, non-diabetic people, as measured in 38 fat samples by another pair of co-authors based in St. Louis.

"It's a really exciting finding," said Ulf Smith MD PhD, a professor at University of Gothenburg, Sweden, and president of the European Association for the Study of Diabetes. He was not involved in this study. "We've been looking for the mechanism to try to understand why glucose metabolism in adipose tissue is so important for whole-body sensitivity to insulin." Eight years ago, Smith extended Kahn's original findings to people and also showed that fat cells that begin to have trouble taking in sugar can be an early indicator of diabetes. In healthy people, fat cells normally need about 10 percent of the sugars derived from food, he said.

In fat cells, the newfound gene acts as a glucose sensor that converts the sugars into fatty acids, which may play a role in the powerful systemic effect. In response to rising glucose levels, the gene makes a more active version of itself. The active version turns on the cellular machinery that disassembles the sugar molecules and remakes them into fatty acids. The novel version of this gene is called carbohydrate-responsive-element-binding protein-beta, or ChREBP-beta for short.

In the liver, where the original gene was discovered by other scientists, the same fatty acid synthesis process is harmful. There, the transformation of glucose into fatty acids raises triglycerides in the blood and leads to nonalcoholic fatty liver disease.

The mice in the latest study were first developed in Kahn's lab two decades ago to model a surprising feature of human obesity. The number of glucose transporters (GLUT4) drops with obesity – but only on fat cells – and it happens early in the development of diabetes. (GLUT4 is also found on muscle and heart cells.) Kahn generated mice with genetic alterations in the amount of GLUT4 in fat cells, seeking clues to the link between obesity and diabetes.

One set of mice features 5 to 10 times the usual number of glucose transporters in its fat cells. These mice are obese but exhibit none of the diseases usually associated with obesity. Another set of mice is missing the glucose transporters on their fat cells, which causes diabetes symptoms despite the fact that these mice have normal body weight.

"There's something very special about GLUT4," Kahn said. "When you wake up and haven't eaten all night, the GLUT4 transporters are inside the cell. Within minutes of eating and glucose reaching the blood and stimulating insulin secretion, the GLUT4 transporters move to the cell surface. It's reliable, fast, dynamic and critical to maintaining normal blood sugar after we eat."

Now, the Kahn team has identified how fat cells with GLUT4 can sense the change in glucose transport into the cell and respond by regulating insulin sensitivity in the entire body. The new study reveals a new, potent version of a gene that transforms glucose into fatty acids. "We definitely do not want to imply that people should eat more sugar," Kahn said.

In future research, the team will investigate whether the gene activity could be working directly through fatty acids or altering fat cells and the molecules they secrete in other ways. The BIDMC team is pursuing the fatty acid angle, in part because it seems to fly in the face of conventional wisdom.

The concept that some fatty acids might be beneficial is not new, but "until recently, it was thought that human adipose tissue was not capable of synthesizing many fatty acids," Herman said. In fact, beneficial fatty acids such as omega-3s from fish, and other fatty acids found in olive oil, are usually recommended as part of a healthy diet.

And the fatty acids humans do generate were not thought to be beneficial. "There is a mythology that elevated fatty acids in the blood are detrimental metabolically and generally signal insulin resistance in people," Kahn said. "Our study demonstrates that doesn't have to be the case. It raises the question of whether there are some special fatty acids being made as a result of upregulation of ChREBP."

INFORMATION:

The research was funded by the U.S. National Institutes of Health, Boston Area Diabetes Endocrinology Research Center, Boston Nutrition Obesity Research Center, the Picower and JPB Foundations, a Fellowship from the Radcliffe Institute for Advanced Study, and the Deutsche Forschungsgemeinschft DFG.

In addition to Kahn and Herman, study coauthors include BIDMC investigators Odile D. Peroni, and Jorge Villoria; Michel R. Schon of Stadtisches Klinikum Karlsruhe, Karlsruhe, Germany; Nada A. Abumrad and Samuel Klein of Washington University School of Medicine; and Matthias Bluher of the University of Leipzig, Leipzig, Germany.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and is ranked third in National Institutes of Health funding among independent hospitals nationwide. BIDMC is a clinical partner of the Joslin Diabetes Center and is a research partner of the Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.org.

END



ELSE PRESS RELEASES FROM THIS DATE:

MDC-researchers elucidate molecular mechanism contributing to cardiomyopathy

2012-04-02
Cardiomyopathy comprises a deterioration of the heart muscle that affects the organ's ability to efficiently pump blood through the body. Previously researchers have tied forms of the disease to the alternative splicing of titin, a giant protein that determines the structure and biomechanical properties of the heart, but the molecular mechanism remained unknown. Professor Michael Gotthardt and Professor Norbert Hübner of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, and colleagues have found that the RNA binding motif protein 20 (RBM20), a gene ...

Heart failure's effects in cells can be reversed with a rest

2012-04-02
Structural changes in heart muscle cells after heart failure can be reversed by allowing the heart to rest, according to research at Imperial College London. Findings from a study in rats published today in the European Journal of Heart Failure show that the condition's effects on heart muscle cells are not permanent, as has generally been thought. The discovery could open the door to new treatment strategies. Heart failure means that the heart muscle is too weak or stiff to pump blood as effectively as it needs to, and it is commonly the result of a heart attack. Around ...

The role of physics in the sinking of the Titanic

2012-04-02
A century on from the sinking of the Titanic, science writer Richard Corfield takes a look at the cascade of events that led to the demise of the 'unsinkable' ship, taking into account the maths and physics that played a significant part. At 11.40 p.m. on Sunday 14 April 1912 the Titanic, bound from Southampton to New York, struck an iceberg just off the coast of Newfoundland and became fully submerged within three hours, before dropping four kilometres to the bottom of the Atlantic. There have been many stories recounting why the ship struck the iceberg and why two-thirds ...

Mechanism found connecting metastatic breast cancer and arthritis

2012-04-02
New research shows it may be no accident when doctors observe how patients suffering from both breast cancer and arthritis seem to have more aggressive cancer. However, the new-found interaction between the two diseases may also suggest a possible treatment. A potential relationship between metastatic breast cancer and autoimmune arthritis, as suggested by past epidemiological studies, has led researchers from the University of North Carolina at Charlotte to perform a series of mouse model experiments that appear to confirm the connection. "Epidemiological studies ...

Protein Aurora-A is found to be associated with survival in head and neck cancer

2012-04-02
CHICAGO, IL (April 1, 2012)––Researchers at Fox Chase Cancer Center in Philadelphia have found that a protein associated with other cancers appears to also be important in head and neck cancer, and may consequently serve as a good target for new treatments. The findings will be reported at the AACR Annual Meeting 2012 on Sunday, April 1. The researchers found that patients whose tumors had higher levels of the protein known as Aurora-A had a shorter survival following surgery to remove their tumors than patients whose tumors had normal levels of the protein. "This ...

The protein survivin could be a useful biomarker for pancreatic cancer

2012-04-02
CHICAGO, IL (April 1, 2012)––Pancreatic cancer kills more than 40,000 people every year, and among cancers it's particularly insidious. For 80 percent of patients, the disease is already so advanced at the time of diagnosis that treatment is unlikely to provide significantly life-extending benefits. For patients diagnosed with localized pancreatic cancer, the five-year survival rate remains barely above 20 percent, according to the National Cancer Institute. New research from scientists at Fox Chase Cancer Center in Philadelphia, which will be presented at the AACR Annual ...

Fox Chase scientists identify key protein players in hard-to-treat breast cancers

2012-04-02
CHICAGO, IL (April 1, 2012)––At the time of diagnosis, the majority of breast cancers are categorized as estrogen-receptor positive, or hormone sensitive, which means their cancerous cells may need estrogen to grow. Patients with this type of cancer often respond favorably to treatments called aromatase inhibitors, like tamoxifen, which cause cell death by preventing estrogen from reaching the cancerous cells. Over time, however, the disease often becomes resistant to estrogen deprivation from the drugs—making treatment options more limited. New findings that will be ...

New comparison of ocean temperatures reveals rise over the last century

2012-04-02
A new study contrasting ocean temperature readings of the 1870s with temperatures of the modern seas reveals an upward trend of global ocean warming spanning at least 100 years. The research led by Scripps Institution of Oceanography at UC San Diego physical oceanographer Dean Roemmich shows a .33-degree Celsius (.59-degree Fahrenheit) average increase in the upper portions of the ocean to 700 meters (2,300 feet) depth. The increase was largest at the ocean surface, .59-degree Celsius (1.1-degree Fahrenheit), decreasing to .12-degree Celsius (.22-degree Fahrenheit) at ...

Raising the school leaving – while learning from another age

2012-04-02
In April 1947 the post-war Labour Government raised the school leaving age from 14 to 15 and paved the way for a further increase to 16 in 1972. Now, 65 years later, as the UK prepares to raise the 'education participation age' to 17 in 2013 and to 18 in 2015, new research reveals that the transitions of 1947 and 1972 met with more controversy and difficulty than previously thought. In a study funded by the Economic and Social Research Council, Dr Tom Woodin and Professor Gary McCulloch of the Institute of Education, London, analysed the debate surrounding the implementation ...

Expert task force recommends halving global fishing for crucial prey species

Expert task force recommends halving global fishing for crucial prey species
2012-04-02
WASHINGTON – Fishing for herring, anchovy, and other "forage fish" in general should be cut in half globally to account for their critical role as food for larger species, recommends an expert group of marine scientists in a report released today. The Lenfest Forage Fish Task Force conducted the most comprehensive worldwide analysis of the science and management of forage fish populations to date. Its report, "Little Fish, Big Impact: Managing a crucial link in ocean food webs," concluded that in most ecosystems at least twice as many of these species should be left in ...

LAST 30 PRESS RELEASES:

Drug candidate eliminates breast cancer tumors in mice in a single dose

WSU study shows travelers are dreaming forward, not looking back

Black immigrants attract white residents to neighborhoods

Hot or cold? How the brain deciphers thermal sensations

Green tea-based adhesive films show promise as a novel treatment for oral mucositis

Single-cell elemental analysis using Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

BioChatter: making large language models accessible for biomedical research

Grass surfaces drastically reduce drone noise making the way for soundless city skies

Extent of microfibre pollution from textiles to be explored at new research hub

Many Roads Lead to… the embryo

Dining out with San Francisco’s coyotes

What’s the mechanism behind behavioral side effects of popular weight loss drugs?

How employee trust in AI drives performance and adoption

Does sleep apnea treatment influence patients’ risk of getting into car accidents?

Do minimum wage hikes negatively impact students’ summer employment?

Exposure to stress during early pregnancy affects offspring into adulthood

Curious blue rings in trees and shrubs reveal cold summers of the past — potentially caused by volcanic eruptions

New frontiers in organic chemistry: Synthesis of a promising mushroom-derived compound

Biodegradable nylon precursor produced through artificial photosynthesis

GenEditScan: novel k-mer analysis tool based on next-generation sequencing for foreign DNA detection in genome-edited products

Survey: While most Americans use a device to monitor their heart, few share that data with their doctor

Dolphins use a 'fat taste' system to get their mother’s milk

Clarifying the mechanism of coupled plasma fluctuations using simulations

Here’s what’s causing the Great Salt Lake to shrink, according to PSU study

Can DNA-nanoparticle motors get up to speed with motor proteins?

Childhood poverty and/or parental mental illness may double teens’ risk of violence and police contact

Fizzy water might aid weight loss by boosting glucose uptake and metabolism

Muscular strength and good physical fitness linked to lower risk of death in people with cancer

Recommendations for studying the impact of AI on young people's mental health  proposed by Oxford researchers

Trump clusters: How an English lit graduate used AI to make sense of Twitter bios

[Press-News.org] Study finds protective gene in fat cells
Discovery may be a potential therapeutic for Type 2 diabetes