(Press-News.org) Two Massachusetts General Hospital (MGH)-based research teams, along with a group from the University of California at San Diego, have discovered that animals have a previously unknown system for detecting and responding to pathogens and toxins. In three papers published in the journals Cell and Cell Host & Microbe, the investigators describe finding evidence that disruptions to the core functions of animal cells trigger immune and detoxification responses, along with behavioral changes.
"Viewing many diseases through the prism of this newly discovered system will eventually allow a reinterpretation of disorders from several branches of medicine as aberrant responses to toxins and bacteria," says Gary Ruvkun, PhD, of the MGH Department of Molecular Biology, senior author of a paper in the April 13 issue of Cell. "While these initial studies are in the C. elegans roundworm, many of the regulatory factors that we have identified are also present in humans."
The Cell paper from the Ruvkun lab describes experiments by research fellow Justine Melo, PhD, revealing that inactivation by RNA interference of cellular components involved in core cellular functions – including translation of messenger RNAs into proteins on ribosomes or energy production in mitochondria – not only halted growth and reproduction in C. elegans but also induced the animals to move away from the E. coli bacteria they usually prefer to consume. Several of these deactivated components are known to be targets of chemical or protein toxins produced by bacteria and fungi, and Melo and Ruvkun showed that C. elegans exhibited the same aversive behavior when exposed to benign E. coli supplemented with any of several natural chemical toxins.
Additional experiments by Melo and Ruvkun revealed that inactivation of these core cellular components induced expression of genes known to be involved in the innate immune system's response against specific toxins and pathogens even when no toxins or pathogens were actually present. The researchers theorize that the observed behavioral response of C. elegans is similar to the way other animals avoid eating when they feel ill, whether or not food is the source of illness. They note that a fundamental cellular surveillance system that responds broadly to toxin-produced disruption of essential activities rather than to the presence of the toxin itself could protect against pathogens not previously encountered, and that directly monitoring these core components would allow early detection of and response to unknown toxins.
One of the reports appearing in Cell Host & Microbe from a team led by Frederick Ausubel, PhD, of MGH Molecular Biology reported similar results. That study found that consumption by C. elegans of E. coli induced to express a protein-synthesis-inhibiting toxin produced by the bacterial pathogen P. aeruginosa activated innate immune gene pathways that are also induced by protein-synthesis-inhibiting antibiotics produced by different pathogens. These pathways were not activated by an inactive version of the P. aeruginosa toxin that did not affect protein synthesis, indicating that it was the disruption of that core cellular activity and not the presence of the toxin itself that produced the immune response. The accompanying Cell Host & Microbe study from the UC San Diego team led by Emily Troemel, PhD, found that this same P. aeruginosa toxin also activates synthesis of a key immune regulator, directly stimulating the response against the toxin.
"It has been predicted for quite a while that animal immune systems would respond to the effects of bacterial toxins, but there has not been a lot of experimental support for this hypothesis," says Ausubel. "The experiments described in our Cell Host & Microbe paper, however, show very clearly that C. elegans can detect a disruption of protein synthesis that leads to a strong immune response, irrespective of whether they have been challenged with a pathogen. We are now testing whether the mammalian immune system responds the same way."
Ruvkun notes that these genetic pathways for responding to pathogens and their toxins will probably be important in many human diseases. Individual variations in responses to pathogen-produced toxins could explain the runaway inflammation and organ failure of sepsis and toxic shock, and drugs developed to target this pathway could help combat those potentially life-threatening responses. Activation of these pathways also may underlie nausea – which may be the human version of C. elegans aversion to toxin-laced food – a major problem plaguing both drug development and the use of current therapies such as chemotherapy drugs, making suppression of these responses a significant goal.
"This genetic analysis of how toxins are detected and the signals that are generated may identify new endocrine pathways in the worm and corresponding versions in humans," says Ruvkun, a professor of Genetics at Harvard Medical School (HMS). "Further study may reveal how these endocrine signals relate to human drug response and whether the endocrine state of these aversively stimulated animals corresponds to that of humans who have been 'poisoned' with pathogen-produced toxins. Identifying the genetic components of this aversive behavior could lead us to discover the endocrinology behind feeling ill and new ways to relieve that universal response."
INFORMATION:
Ausubel is also a professor of Genetics at HMS, and the co-authors of his Cell Host & Microbe report are lead author Deborah McEwan, PhD, and Natalia Kirienko, PhD. Ruvkun's Cell study was supported by a grant from the National Institutes of Health, and the Ausubel team's study was supported by the NIH and the Massachusetts Biomedical Research Corporation.
Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.
END
Chapel Hill, NC – In a paper published today in the journal Cell, a team from the University of North Carolina at Chapel Hill unveils the first broad-based test for activation of protein kinases "en masse", enabling measurement of the mechanism behind drug-resistant cancer and rational prediction of successful combination therapies.
Kinases are proteins expressed in human tissues that play a key role in cell growth, particularly in cancer. Of the 518 known human kinases, about 400 are expressed in cancers, but which ones and how many are actually active in tumors has ...
There is a connection between phthalates found in cosmetics and plastics and the risk of developing diabetes among seniors. Even at a modest increase in circulating phthalate levels, the risk of diabetes is doubled. This conclusion is drawn by researchers at Uppsala University in a study published in the journal Diabetes Care.
"Although our results need to be confirmed in more studies, they do support the hypothesis that certain environmental chemicals can contribute to the development of diabetes," says Monica Lind, associate professor of environmental medicine at the ...
Meat consumption in the developed world needs to be cut by 50 per cent per person by 2050 if we are to meet the most aggressive strategy, set out by the Intergovernmental Panel on Climate Change (IPCC), to reduce one of the most important greenhouse gases, nitrous oxide (N2O).
This is the finding from a new study, published today, 13 April, in IOP Publishing's Environmental Research Letters, which also claims that N2O emissions from the industrial and agricultural sectors will also need to be cut by 50 per cent if targets are to be met.
The findings have been made ...
A team of researchers at Case Western Reserve University School of Medicine have identified a new mechanism by which colon cancer develops. By focusing on segments of DNA located between genes, or so-called "junk DNA," the team has discovered a set of master switches, i.e., gene enhancer elements, that turn "on and off" key genes whose altered expression is defining for colon cancers. They have coined the term Variant Enhancer Loci or "VELs," to describe these master switches.
Importantly, VELs are not mutations in the actual DNA sequence, but rather are changes in proteins ...
Inadequate knowledge about the effects of deepwater oil well blowouts such as the Deepwater Horizon event of 2010 threatens scientists' ability to help manage and assess comparable events in future, according to an article that a multi-author group of specialists will publish in the May issue of BioScience. Even federal "rapid response" grants awarded to study the Deepwater Horizon event were far more focused on near-surface effects than on the deepwater processes that the BioScience authors judge to be most in need of more research.
The article, by a team led by Charles ...
A new University of British Columbia study finds that the way individuals experience the universal emotion of pride directly impacts how racist and homophobic their attitudes toward other people are.
The study, published in the April issue of Personality and Social Psychology Bulletin, offers new inroads in the fight against harmful prejudices such as racism and homophobia, and sheds important new light on human psychology.
"These studies show that how we feel about ourselves directly influences how we feel about people who are different from us," says Claire Ashton-James, ...
PASADENA, Calif.—What happens to a stem cell at the molecular level that causes it to become one type of cell rather than another? At what point is it committed to that cell fate, and how does it become committed? The answers to these questions have been largely unknown. But now, in studies that mark a major step forward in our understanding of stem cells' fates, a team of researchers from the California Institute of Technology (Caltech) has traced the stepwise developmental process that ensures certain stem cells will become T cells—cells of the immune system that help ...
San Francisco, April 12, 2012 -- Scientists will convene in San Diego to present the latest seismological research at the annual conference of the Seismological Society of America (SSA), April 17-19.
This year's meeting is expected to draw a record number of registrants, with more than 630 scientists in attendance, and will feature 292 oral presentations and 239 poster presentations.
"For over 100 years the Annual Meeting of SSA has been the forum of excellence for presenting and discussing exciting new developments in seismology research and operations in the U.S. ...
The roads are the main cause of fragmenting the habitats of many species, especially amphibians, as they cause them to be run over and a loss of genetic diversity. Furthermore, traffic harms two abundant species that represent the amphibious Asturian fauna and have been declared vulnerable in Spain: the midwife toad (Alytes obstetricans) and the palmate newt (Lissotriton helveticus).
"But midwife toad and palmate newt populations have very different sensitivities to the effects of roads" Claudia García-González, researcher at the University of Oviedo, told SINC. "These ...
In order to survive, plants should take up neither too many nor too few minerals from the soil. New insights into how they operate this critical balance have now been published by biologists at the Ruhr-Universität in a series of three papers in the journal The Plant Cell. The researchers discovered novel functions of the metal-binding molecule nicotianamine. "The results are important for sustainable agriculture and also for people – to prevent health problems caused by deficiencies of vital nutrients in our diet" says Prof. Dr. Ute Krämer of the RUB Department of Plant ...