(Press-News.org) NEW YORK (May 22, 2012) -- Up to half of all prostate cancer cells have a chromosomal rearrangement that results in a new "fusion" gene and formation of its unique protein -- but no one has known how that alteration promotes cancer growth. Now, Weill Cornell Medical College researchers have found that in these cancer cells, the 3-D architecture of DNA, wrapped up in a little ball known as a chromatin, is warped in such a way that a switch has been thrown on thousands of genes, turning them on or off to promote abnormal, unchecked growth. Researchers also found that new chromosomal translocations form, further destabilizing the genome.
These findings, published in the Proceedings of the National Academy of Sciences (PNAS), are the first to show how this chromosomal mutation likely contributes to early development of prostate cancer -- and suggests a model for how other chromosomal translocations, common to many tumor types, are linked to cancer formation and growth.
"This is likely a phenomenon that occurs in many types of cancers when oncogenic fusion genes are over-expressed," says the study's senior author, Dr. Mark A. Rubin, The Homer T. Hirst Professor of Oncology in Pathology and vice chair for experimental pathology at Weill Cornell Medical College.
Dr. Rubin adds that if such an oncogenic protein has the power to throw the switch on thousands of genes, a novel treatment may be able to turn that switch off. "If we understand how this works, then we may be able to borrow that trick to target many genes simultaneously. This discovery would hold a lot of promise for cancer therapy," he says.
The study also adds to the growing understanding of how remodeling of the chromatin regulates genes linked to cancer, says the study's lead author, Dr. David S. Rickman, assistant professor of pathology and laboratory medicine at Weill Cornell Medical College. The genome's DNA, along with specialized proteins, has to be packed into the chromatin bundle so that it can fit inside a cell's nucleus, and when genes need to be expressed, the chromatin opens up a bit, allowing transcription. Emerging evidence suggests that, within this package, the genome organizes itself according to a non-randomly-assembled, 3-D architecture of hubs and domains that affect when and where individual genes are turned on.
This study shows the oncogenic ERG protein, produced by the ETS prostate cancer fusion gene, binds to specific sites in the genome, which then forces the 3-D genome architecture to vastly change, creating different hubs and domains, Dr. Rickman says. This results in additional chromosomal translocations, as well as a coordinated expression of genes known to be relevant to aggressive prostate cancer, he says.
The research shows just how complex genetic regulation really is and how distortions in this process can lead to cancer, says Dr. Rubin, who is also a professor of pathology and laboratory medicine and professor of pathology in urology at Weill Cornell Medical College.
"We used to think everything related to gene expression was linear, that one promoter affected the gene located right next to it," he says. "Now we are beginning to understand that what happens in the 3-D space of tightly bundled DNA is also important -- how DNA opens up and undergoes changes that efficiently turn on whole sets of genes that aren't located anywhere near each other."
It Takes a Village -- of Scientists
Reaching these findings required a collaborative team of scientists, says Dr. Rubin, who co-discovered the ETS fusion gene. For this project, he sought the expertise of Dr. Rickman and Dr. Olivier Elemento, an assistant professor in the Department of Physiology and Biophysics and assistant professor of computational genomics in the Institute for Computational Biomedicine at Weill Cornell Medical College, and a co-senior author of the paper. Dr. Elemento and his lab provided the expertise in computational biology and mathematical analysis needed to interpret the complex data produced by the experiments run by Dr. Rickman, his lab and members of the Rubin laboratory.
Joining them were nine other scientists from Weill Cornell Medical College, and two from Mount Sinai School of Medicine.
Dr. Elemento, Dr. Rickman and their laboratory colleagues used numerous techniques to understand the effect of the ERG oncoprotein. They first used an experimental technique called Hi-C to query chromatin interactions throughout the genome. "Chromatin interactions are inherently complex and it is easy to grasp why this is so," says Dr. Elemento. "There are about 25,000 known genes in the human genome therefore there are possibly 25,000 x 25,000 interactions between genes -- which is 625 million -- and that is only scratching the surface."
To treat the high volume of data the researchers needed to develop new statistical methods to detect chromatin interactions and the changes that occur when ERG is over-expressed.
Then, to understand why these chromatin interaction changes occurred in the first place -- what it is that ERG does to generate new interactions or abolish existing ones -- they performed additional experiments, which produced even more data. They used a technique called ChIP-seq to map where on the genome ERG likes to bind, and then used the RNA-seq tool to determine which genes are expressed or shut down when ERG is present.
More analyses were needed to identify genes and regions on the genome whose interaction patterns changed most when ERG was over-expressed. Finally, they reached what Dr. Elemento called a shocking revelation: "ERG binds very often near the genes whose interaction patterns change the most, thus indicating that ERG directly mediates the interaction by binding to these regions."
The researchers then discovered that genes whose expression was collectively increased or shut down, and which were involved in chromatin interactions, were those that are involved in cell invasion, a key feature of aggressive prostate cancer. "We thus think that ERG may contribute to prostate cancer phenotype by rearranging chromatin interactions to promote the expression of these key malignancy genes," Dr. Elemento says.
ERG also seems to push the formation of new chromosomal translocations, he says. "This is exciting because it points to a completely novel, non-transcriptional role for ERG in cancer," Dr. Elemento says. "We think that it is possible that many genes like ERG -- which bind to the DNA -- could promote the formation of novel genetic alterations by rearranging chromatin interactions."
Dr. Rickman agrees, "These findings extend beyond the context of the prostate as many driving genetic lesions in other cancer types involve abnormal expression of transcription factors due to genomic alterations."
The researchers are now conducting studies to unravel the mechanism that accounts for these architectural changes. "Achieving this will provide a new understanding of cancer and novel ways to treat and prevent its progression," Dr. Rickman says.
###
The work was supported by funding from a U.S. Department of Defense New Investigator Award, a National Science Foundation CAREER Grant, a National Institutes of Health National Cancer Institute Grant and by the Starr Cancer Consortium.
Other co-authors include Dr. T. David Soong, Benjamin Moss, Dr. Juan Miguel Mosquera, Jan Dlabal, Dr. Stéphane Terry, Theresa Y. MacDonald, Dr. Karen Bunting, Dr. Francesca Demichelis and Dr. Ari M. Melnick from Weill Cornell Medical College; and Joseph Tripodi and Dr. Vesna Najfeld from Mount Sinai School of Medicine.
Weill Cornell Medical College
Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances -- including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Weill Cornell Medical College is affiliated with NewYork-Presbyterian Hospital, where its faculty provides comprehensive patient care at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. The Medical College is also affiliated with the Methodist Hospital in Houston. For more information, visit weill.cornell.edu.
Scientists unravel role of fusion gene in prostate cancer
Researchers show how mutation found in half of all prostate cancers may lead to disease development and other cancers
2012-05-23
ELSE PRESS RELEASES FROM THIS DATE:
Breast cancer clinical trial tests combo of heat shock protein inhibitor and hormonal therapy
2012-05-23
CAMBRIDGE, Mass. (May 22, 2012) – Pushed to the brink of survival, the hyper-driven cells of a cancerous tumor tap into an ancient system that has helped organisms cope with internal stresses and environmental challenges since life began. As an integral part of this system, heat shock protein 90 (HSP90) has been shown to help malignant cells accommodate the genetic changes and profound disturbances in normal biology that occur in cancers.
Researchers have theorized that inhibiting HSP90 just might render breast cancer cells less likely to escape the challenge posed ...
New study shows how nanotechnology can help detect disease earlier
2012-05-23
LEXINGTON, KY. (May 21, 2012) — A new study led by University of Kentucky researchers shows a new way to precisely detect a single chemical at extremely low concentrations and high contamination.
The study, published online for ACS Nano, was carried out in the laboratory of Peixuan Guo, the William S. Farish Endowed Chair in Nanobiotechnology at the University of Kentucky Markey Cancer Center. The study shows that the phi29 DNA packaging nanomotor connector can be used to sense chemicals with reactive thioesters or maleimide using single channel conduction assays based ...
The older we get, the less we know (cosmologically)
2012-05-23
The universe is a marvelously complex place, filled with galaxies and larger-scale structures that have evolved over its 13.7-billion-year history. Those began as small perturbations of matter that grew over time, like ripples in a pond, as the universe expanded. By observing the large-scale cosmic wrinkles now, we can learn about the initial conditions of the universe. But is now really the best time to look, or would we get better information billions of years into the future - or the past?
New calculations by Harvard theorist Avi Loeb show that the ideal time to study ...
Psychological Science explains uproar over prostate-cancer screenings
2012-05-23
WASHINGTON— The uproar that began last year when the U.S. Preventive Services Task Force stated that doctors should no longer offer regular prostate-cancer tests to healthy men continued this week when the task force released their final report. Overall, they stuck to their guns, stating that a blood test commonly used to screen for prostate cancer, the PSA test, causes more harm than good — it leads men to receive unnecessary, and sometimes even dangerous, treatments.
But many people simply don't believe that the test is ineffective. Even faced with overwhelming evidence, ...
Array of light for early disease detection?
2012-05-23
A special feature in this week's issue of the journal Science highlights protein array technology, touching on research conducted by Joshua LaBaer, director of the Biodesign Institute's Virginia G. Piper Center for Personalized Diagnostics.
With the successful completion of the Human Genome Project, research attention is increasingly focusing on proteins. Versatile products produced from genetic templates, proteins are principle actors in both the maintenance of health and the onset of illness. Protein microarrays are a means of bridging the gap between analysis of the ...
NASA Sees Eastern Pacific's Second Tropical Storm Form
2012-05-23
On May 21, NASA satellites were monitoring Tropical Depression 02E in the eastern Pacific Ocean, and 24 hours later it strengthened into the second tropical storm of the season. Tropical Storm Bud was captured by NOAA's GOES-13 satellite on May 22, and appears to be well-formed.
Tropical Storm Bud isn't going to stop there, however. According to the forecasters at the National Hurricane Center, Bud is expected to become a hurricane because of light to moderate wind shear and warm sea surface temperatures.
On May 22 at 0900 UTC (2 a.m. PDT/5 a.m. EDT), Tropical Storm ...
NASA satellite sees Tropical Storm Sanvu pass Guam, strengthen
2012-05-23
Tropical Depression 03W in the western North Pacific did exactly what forecasters expected over the last twenty-four hours: it became a tropical storm named Sanvu and passed west of Guam on a northwesterly track.
On May 22 at 0900 UTC (5 a.m. EDT), Tropical Storm Sanvu was more than 100 miles west-northwest of Andersen Air Force Base, Guam, and still over 600 nautical miles south of Iwo To, Japan and headed in that direction. Sanvu's center was located near 15.2 North and 141.9. East. It was still churning up rough surf around Guam. Sanvu has maximum sustained winds near ...
Barrow researchers use magic for discoveries
2012-05-23
(Phoenix, AZ May 22, 2012) -- Researchers at Barrow Neurological Institute at St. Joseph's Hospital and Medical Center have unveiled how and why the public perceives some magic tricks in recent studies that could have real-world implications in military tactics, marketing and sports.
Susana Martinez-Conde, PhD, of Barrow's Laboratory of Visual Neuroscience, and Stephen Macknik, PhD, of Barrow's Laboratory of Behavioral Neurophysiology are well known for their research into magic and illusions. Their most recent original research projects, published in Frontiers in Human ...
Alberto now a tropical depression, seen by NASA
2012-05-23
Infrared satellite imagery from NASA's Aqua satellite revealed Alberto weakened from a tropical storm to a tropical depression as it appears more disorganized. At 10:30 a.m. EDT on May 21, Tropical Storm Alberto weakened to a tropical depression, and has maintained that status today, May 22.
As of 5 a.m. EDT on May 22, Alberto's maximum sustained winds were near 35 mph (55 kph) but he is expected to weaken in 24 hours. Alberto was centered about 220 miles south of Cape Hatteras, North Carolina, near 32.0 North and 75.5 West. Alberto was moving to the northeast near 15 ...
Cleft lip/palate cause much more than cosmetic problems
2012-05-23
MAYWOOD, Ill. -- Children born with cleft lip, cleft palate and other craniofacial disorders face numerous medical challenges beyond appearance.
Patients can face serious airway, feeding, speech and hearing problems, as well as social and psychological challenges, Laura Swibel Rosenthal, MD, of Loyola University Medical Center and colleagues write in the June 2012 issue of Otolaryngologic Clinics of North America.
"The management of patients with craniofacial syndromes is complex," Rosenthal and colleagues write. "Otolaryngologic [ear-nose-throat] evaluation is of paramount ...
LAST 30 PRESS RELEASES:
Computer hardware advance solves complex optimization problems
SOX2: a key player in prostate cancer progression and treatment resistance
Unlocking the potential of the non-coding genome for precision medicine
Chitinase-3-like protein 1: a novel biomarker for liver disease diagnosis and management
The Journal of Nuclear Medicine Ahead-of-Print Tip Sheet: August 22, 2025
Charisma Virtual Social Coaching named a finalist for Global Innovation Award
From the atmosphere to the abyss: Iron's role in Earth's climate history
US oil and gas air pollution causes unequal health impacts
Scientists reveal how microbes collaborate to consume potent greenhouse gas
UMass Amherst kinesiologist receives $2 million ‘outstanding researcher’ award from NIH
Wildfire peer review report for land Brandenburg, Germany, is now online
Wired by nature: Precision molecules for tomorrow's electronics
New study finds hidden body fat is linked to faster heart ageing
How a gift card could help speed up Alzheimer’s clinical research
Depression and anxiety symptoms in adults displaced by natural disasters
Cardiovascular health at the intersection of race and gender in Medicare fee for service
World’s first observation of the transverse Thomson effect
Powerful nodes for quantum networks
Mapping fat: How microfluidics and mass spectrometry reveal lipid landscapes in tiny worms
ATOX1 promotes hepatocellular carcinoma carcinogenesis via activation of the c-Myb/PI3K/AKT signaling pathway
Colibactin-producing E. coli linked to higher colorectal cancer risk in FAP patients
Animal protein not linked to higher mortality risk, study finds
Satellite insights into eutrophication trends on the Qinghai–Tibet plateau
Researchers develop an innovative method for large-scale analysis of metabolites in biological samples
Asteroid Bennu is a time capsule of materials bearing witness to its origin and transformation over billions of years
New AI model can help extend life and increase safety of electric vehicle batteries
Wildfires can raise local death rate by 67%, shows study on 2023 Hawaiʻi fires
Yogurt and hot spring bathing show a promising combination for gut health
Study explains how lymphoma rewires human genome
New Durham University study counters idea that Jupiter’s mysterious core was formed by a giant impact
[Press-News.org] Scientists unravel role of fusion gene in prostate cancerResearchers show how mutation found in half of all prostate cancers may lead to disease development and other cancers