(Press-News.org) STANFORD, Calif. — A study spearheaded by a Stanford University School of Medicine scientist has tracked the trajectories of key immune cells in response to short-term stress and traced, in great detail, how hormones triggered by such stress enhance immune readiness. The study, conducted in rats, adds weight to evidence that immune responsiveness is heightened, rather than suppressed as many believe, by the so-called "fight-or-flight" response.
The study's findings provide a thorough overview of how a triad of stress hormones affects the main cell subpopulations of the immune system. They also offer the prospect of, someday, being able to manipulate stress-hormone levels to improve patients' recovery from surgery or wounds or their responses to vaccines.
You've heard it a thousand times: Stress is bad for you. And it's certainly true that chronic stress, lasting weeks and months, has deleterious effects including, notably, suppression of the immune response. But short-term stress — the fight-or-flight response, a mobilization of bodily resources lasting minutes or hours in response to immediate threats — stimulates immune activity, said lead author Firdaus Dhabhar, PhD, an associate professor of psychiatry and behavioral sciences and member of the Stanford Institute for Immunity, Transplantation, and Infection.
And that's a good thing. The immune system is crucial for wound healing and preventing or fighting infection, and both wounds and infections are common risks during chases, escapes and combat.
Working with colleagues at Stanford and two other universities in a study to be published online June 22 in the Journal of Psychoneuroendocrinology, Dhabhar showed that subjecting laboratory rats to mild stress caused a massive mobilization of several key types of immune cells into the bloodstream and then onto destinations including the skin and other tissues. This large-scale migration of immune cells, which took place over a time course of two hours, was comparable to the mustering of troops in a crisis, Dhabhar said. He and colleagues had previously shown that a similar immune-cell redistribution in patients experiencing the short-term stress of surgery predicts enhanced postoperative recovery.
In the new study, the investigators were able to show that the massive redistribution of immune cells throughout the body was orchestrated by three hormones released by the adrenal glands, in different amounts and at different times, in response to the stress-inducing event. These hormones are the brain's call-to-arms to the rest of the body, Dhabhar said.
"Mother Nature gave us the fight-or-flight stress response to help us, not to kill us," said Dhabhar, who has been conducting experiments for well over a decade on the effects of the major stress hormones on the immune system. Last summer, Dhabhar received the International Society for Psychoneuroendocrinology's Curt. P. Richter Award for his work in this area, culminating in the new study.
The findings paint a clearer picture of exactly how the mind influences immune activity. "An impala's immune system has no way of knowing that a lion is lurking in the grass and is about to pounce, but its brain does," Dhabhar said. In such situations, it benefits lion and impala alike when pathogen-fighting immune cells are in positions of readiness in such places as the skin and mucous membranes, which are at high risk for damage and consequent infection.
So it makes perfect evolutionary sense that predator/prey activity and other situations in nature, such as dominance challenges and sexual approaches, trigger stress hormones. "You don't want to keep your immune system on high alert at all times," Dhabhar said. "So nature uses the brain, the organ most capable of detecting an approaching challenge, to signal that detection to the rest of the body by directing the release of stress hormones. Without them, a lion couldn't kill, and an impala couldn't escape." The stress hormones not only energize the animals' bodies — they can run faster, jump higher, bite harder — but, it turns out, also mobilize the immune troops to prepare for looming trouble.
The response occurs across the animal kingdom, he added. You see pretty much the same pattern of hormone release in a fish that has been picked up out of the water.
The experiments in this study were performed on rats, which Dhabhar subjected to mild stress by confining them (gently, and with full ventilation) in transparent Plexiglas enclosures to induce stress. He drew blood several times over a two-hour period and, for each time point, measured levels of three major hormones — norepinephrine, epinephrine and corticosterone (the rat analog of cortisol in humans) — as well as of several distinct immune-cell types in the blood.
What he saw was a pattern of carefully choreographed changes in blood levels of the three hormones along with the movement of many different subsets of immune cells from reservoirs such as the spleen and bone marrow into the blood and, finally, to various "front line" organs.
To show that specific hormones were responsible for movements of specific cell types, Dhabhar administered the three hormones, separately or in various combinations, to rats whose adrenal glands had been removed so they couldn't generate their own stress hormones. When the researchers mimicked the pattern of stress-hormone release previously observed in the confined rats, the same immune-cell migration patterns emerged in the rats without adrenal glands. Placebo treatment produced no such effect.
The general pattern, Dhabhar said, was that norepinephrine is released early and is primarily involved in mobilizing all major immune-cell types — monocytes, neutrophils and lymphocytes — into the blood. Epinephrine, also released early, mobilized monocytes and neutrophils into the blood, while nudging lymphocytes out into "battlefield" destinations such as skin. And corticosterone, released somewhat later, caused virtually all immune cell types to head out of circulation to the "battlefields."
The overall effect of these movements is to bolster immune readiness. A study published by Dhabhar and his colleagues in 2009 in the Journal of Bone and Joint Surgery assessed patients' recovery from surgery as a function of their immune-cell redistribution patterns during the stress of the operation. Those patients in whom the stress of surgery mobilized immune-cell redistributions similar to those seen in the confined rats in the new study did significantly better afterward than patients whose stress hormones less adequately guided immune cells to appropriate destinations.
The mechanisms Dhabhar has delineated could lead to medical applications, such as administering low doses of stress hormones or drugs that mimic or antagonize them in order to optimize patients' immune readiness for procedures such as surgery or vaccination. "More studies will be required including in human subjects, which we hope to conduct, before these applications can be attempted," Dhabhar said. Closer at hand is the monitoring of patients' stress-hormone levels and immune-cell distribution patterns during surgery to assess their surgical prognosis, or during immunization to predict vaccine effectiveness.
###The study was funded by the John D. & Catherine T. MacArthur Foundation, the Dana Foundation, the DeWitt Wallace Foundation, the Carl & Elizabeth Naumann Fund and the National Institutes of Health. Dhabhar's co-authors were statistician Eric Neri at Stanford, and neuroendocrinologists at Ohio State University and Rockefeller University.
For information on the medical school's Department of Psychiatry and Behavioral Sciences, which also supported this work, please visit http://psychiatry.stanford.edu/.
The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.
Stanford-led study explains how stress can boost immune system
2012-06-22
ELSE PRESS RELEASES FROM THIS DATE:
UCLA study uncovers new tools for targeting genes linked to autism
2012-06-22
UCLA researchers have combined two tools – gene expression and the use of peripheral blood -- to expand scientists' arsenal of methods for pinpointing genes that play a role in autism. Published in the June 21 online edition of the American Journal of Human Genetics, the findings could help scientists zero in on genes that offer future therapeutic targets for the disorder.
"Technological advances now allow us to rapidly sequence the genome and uncover dozens of rare mutations," explained principal investigator Dr. Daniel Geschwind, the Gordon and Virginia MacDonald Distinguished ...
Top predators key to extinctions as planet warms
2012-06-22
New Haven, Conn.—Global warming may cause more extinctions than predicted if scientists fail to account for interactions among species in their models, Yale and UConn researchers argue in Science.
"Currently, most models predicting the effects of climate change treat species separately and focus only on climatic and environmental drivers," said Phoebe Zarnetske, the study's primary author and a postdoctoral fellow at the Yale School of Forestry & Environmental Studies. "But we know that species don't exist in a vacuum. They interact with each other in ways that deeply ...
University of Exeter research uncovers rice blast infection mechanism
2012-06-22
Scientists at the University of Exeter have made a new discovery that they hope might lead to effective control of rice blast disease. Rice blast is the most serious disease of cultivated rice and affects all the rice-growing regions of the world, causing losses of up to 30% of the global rice harvest.
Yasin Dagdas and colleagues studied the rice blast fungus, which develops a pressurised infection cell, called an appressorium to rupture the rice leaf cuticle. The appressorium generates extreme pressure, estimated to be 40 times that of a car tyre. Dagdas and colleagues, ...
Telehealth can reduce deaths and emergency hospital care, but estimated cost savings are modest
2012-06-22
Research: Effect of telehealth on use of secondary care and mortality: findings from the Whole System Demonstrator cluster randomised trial
Editorial: Telehealth for long term conditions
For people with long term conditions, telehealth can reduce deaths and help patients avoid the need for emergency hospital care, finds a study published on bmj.com today.
However, the estimated scale of hospital cost savings is modest and may not be sufficient to offset the cost of the technology, say the authors.
Telehealth uses technology to help people with health problems live ...
Avian flu viruses which are transmissible between humans could evolve in nature
2012-06-22
It might be possible for human-to-human airborne transmissible avian H5N1
influenza viruses to evolve in nature, new research has found. The findings, from research led by Professor Derek Smith and Dr Colin Russell at the University of Cambridge, were published today, 22 June in the journal Science.
Currently, avian H5N1 influenza, also known as bird flu, can be transmitted from birds to humans, but not (or only very rarely) from human to human. However, two recent papers by Herfst, Fouchier and colleagues in Science and Imai, Kawaoka and colleagues in Nature reveal ...
EARTH: Neutralizing the rain
2012-06-22
Alexandria, VA – In the 1980s, acid rain was a big topic of conversation. Everyone knew about it. Today, just a couple of decades later, it's all but been forgotten. Why and how did this happen?
As EARTH explores in the July issue, the problem of acid rain has largely been solved. The solution started with congressional amendments to the Clean Air Act in 1990 that called for government regulation of sulfur dioxide emissions, a known cause of acid rain. Two decades later, sulfur dioxide emissions have been halved and previously damaged waterways and forests have largely ...
New anti-inflammatory drugs pinch off reactive oxygen species at the source
2012-06-22
Scientists at Emory University School of Medicine have identified a new type of anti-inflammatory compound that may be useful in treating a wide range of conditions, including neurodegenerative and autoimmune diseases. These compounds inhibit the enzyme Nox2, part of a family of enzymes responsible for producing reactive oxygen species (ROS).
The results were published Thursday in the journal Chemistry & Biology.
"Nox2 inhibitors could be valuable with many conditions where inflammation plays a role," says senior author David Lambeth, MD, PhD, professor of pathology ...
Research could help track stem cells in the body
2012-06-22
Researchers at the University of Liverpool have developed new methods to track stem cells and further understanding of what happens to them after they have been in the body for a significant period of time.
Stem cells are used to treat conditions such as leukaemia and have the potential to treat many more diseases and disorders where patient survival is reliant on organ and tissue donation. Currently, however, it is difficult for medics to establish whether stem cells have survived following transplantation in the body and if they reach their target site or migrate elsewhere.
In ...
A better way to help high-risk pregnant smokers
2012-06-22
Cigarette smoking among drug dependent pregnant women is alarmingly high, estimated at 77 to 99%. Programs that treat pregnant patients for substance use disorders often fail to address cigarette smoking despite the clear risks to both mother and child, including ectopic pregnancy, spontaneous abortion, preterm delivery, low birth weight, and Sudden Infant Death Syndrome. However, programs to help people quit smoking do not seem to interfere with drug abuse treatment, and may actually improve drug abstinence rates.
One of the most effective methods of helping people ...
Neiker-Tecnalia identifies antitumour proteins in the latex of the plant Euphorbia trigona
2012-06-22
The purified proteins by the Department of Biotechnology of Neiker-Tecnalia have demonstrated their ability to inhibit the growth of several tumor cell lines. This property shows that the latex proteins of this plant, which is very prolific and easily acclimated, could be considered in clinical trials for cancer treatment due to its anti-tumor activity. The research has been done in collaboration with the University of Oviedo (Spain) and with funding from the Department for the Environment, Territorial Planning, Agriculture and Fisheries of the Government of the Basque ...