(Press-News.org) Experts at The University of Nottingham are the first to create a stable version of a 'trophy molecule' that has eluded scientists for decades.
In research published in the prestigious journal Science, the team of chemists at Nottingham has shown that they can prepare a terminal uranium nitride compound which is stable at room temperature and can be stored in jars in crystallized or powder form.
Previous attempts to prepare uranium-nitrogen triple bonds have required temperatures as low as 5 Kelvin (-268 °C) — roughly the equivalent temperature of interstellar space — and have therefore been difficult to work with and manipulate, requiring specialist equipment and techniques.
The breakthrough could have future implications for the nuclear energy industry — uranium nitride materials may potentially offer a viable alternative to the current mixed oxide nuclear fuels used in reactors since nitrides exhibit superior high densities, melting points, and thermal conductivities and the process the scientists used to make the compound could offer a cleaner, low temperature route than methods currently used.
The research has been led by Dr Stephen Liddle in the School of Chemistry and much of the practical work was completed by PhD student David King. The work was also supported by colleagues at the University of Manchester.
Uranium nitrides are usually prepared by mixing dinitrogen or ammonia with uranium under high temperatures and pressures. Unfortunately, however, the harsh reaction conditions used in the preparation introduces impurities which are difficult to remove. In recent years scientists have therefore focussed their attention on using low temperature, molecular methods but all previous attempts resulted in bridging, rather than the target terminal, nitrides.
The Nottingham team's method involved using a very 'bulky' nitrogen ligand (an organic molecule bonded to a metal) to wrap around the uranium centre and to create a protective pocket in which the nitride nitrogen can sit. The nitride was stabilised during the synthesis by the presence of a weakly bound sodium cation (positively charged ion) which blocked the nitride from reacting with any other elements. In the final stage, the sodium was gently teased away, removing it from the structure and leaving the final, stable uranium nitride triple bond.
Dr Liddle said: "The beauty of this work is its simplicity — by encapsulating the uranium nitride with a very bulky supporting ligand, stabilising the nitride during synthesis with sodium, and then sequestering the sodium under mild conditions we were able to at long last isolate the terminal uranium nitride linkage."
He added: "A major motivation for doing this work was to help us to understand the nature and extent of the covalency in the chemical bonding of uranium. This is fundamentally interesting and important because it could help in work to extract and separate the 2 to 3 per cent of the highly radioactive material in nuclear waste."
The research was supported by the UK National Electron Paramagnetic Resonance (EPR) Facility, funded by the Engineering and Physical Sciences Research Council and based in the Photon Science Institute at The University of Manchester. The uranium-nitride contains an unpaired electron and by using EPR spectroscopy it was found that it behaves differently from similar compounds prepared at Nottingham.
Professor Eric McInnes, from The University of Manchester said: "EPR spectroscopy can give detailed information about the local environment of unpaired electrons, and this can be used to understand the electronic structure of the uranium ion in this new nitride. It turns out that the new nitride behaves differently from some otherwise analogous materials, and this might have important implications in actinide chemistry which is of vital technological and environmental importance in the nuclear fuel cycle."
INFORMATION:
The research has been funded and supported by the Royal Society, European Research Council, the EPSRC, and the UK National Nuclear Laboratory.
END
A new approach to testing medical treatment options could ensure that more patients get the most beneficial treatment for them – but still yield valuable research results that stand up to scientific scrutiny.
The approach tries to overcome a huge chicken-and-egg problem in medical research: Not enough people volunteer for studies of new treatments partly because researchers can't promise the studies will help them -- but without enough volunteers, researchers can't study new treatment options.
But a new "adaptive" way of designing medical studies could help. In a ...
Researchers at Moffitt Cancer Center and colleagues at the University of South Florida, the German Cancer Research Center in Heidelberg, and the International Agency for Research on Cancer in Lyon, France, conducted a case control study and found associations between having antibodies to certain types of cutaneous human papillomavirus (HPV) and a kind of skin cancer called squamous cell carcinoma (SCC).
Their study, the first case-control study to investigate the association between SCC and cutaneous HPV types belonging to five different genera, appeared in a recent ...
Amsterdam, NL, July 2, 2012 – After stroke, patients often suffer from dysphagia, a swallowing disorder that results in greater healthcare costs and higher rates of complications such as dehydration, malnutrition, and pneumonia. In a new study published in the July issue of Restorative Neurology and Neuroscience, researchers have found that transcranial direct current stimulation (tDCS), which applies weak electrical currents to the affected area of the brain, can enhance the outcome of swallowing therapy for post-stroke dysphagia.
"Our pilot study demonstrated that ...
PROVIDENCE, R.I. [Brown University] — What makes laparoscopic surgery "minimally invasive" — instruments enter the patient through narrow tubes — also makes it visually constraining. As they work on different tasks, surgeons all see the same view. What if each surgeon could control a separate view best suited to the specific task? In a new paper, pediatric surgeon Dr. Francois Luks and his team of co-authors at Brown University and Hasbro Children's Hospital report that in a small in vitro trial, surgeons with their own views performed faster and more accurately.
"When ...
Researchers are closer to understanding the biology behind GHB, a transmitter substance in the brain, best known in its synthetic form as the illegal drug fantasy. These findings have just been published in the scientific journal PNAS.
In the 1960s, gamma-hydroxybutyric acid (GHB) was first discovered as a naturally occurring substance in the brain. Since then it has been manufactured as a drug with a clinical application and has also developed a reputation as the illegal drug fantasy and as a date rape drug. Its physiological function is still unknown. Researchers identify ...
Amsterdam, NL, July 2, 2012 – Growing evidence suggests that Parkinson's disease (PD) often starts with non-motor symptoms that precede diagnosis by several years. In the first study to examine patterns in the quality of life of Parkinson' disease patients prior to diagnosis, researchers have documented declines in physical and mental health, pain, and emotional health beginning several years before the onset of the disease and continuing thereafter. Their results are reported in the latest issue of Journal of Parkinson's Disease.
"We observed a decline in physical function ...
(Embargoed) CHAPEL HILL, NC – New research led by a medical geneticist at the University of North Carolina School of Medicine points to an increased risk of autism spectrum disorders (ASDs) among individuals whose parents or siblings have been diagnosed with schizophrenia or bipolar disorder.
The findings were based on a case-control study using population registers in Sweden and Israel, and the degree to which these three disorders share a basis in causation "has important implications for clinicians, researchers and those affected by the disorders," according to a report ...
Research led by St. Jude Children's Research Hospital scientists has identified a possible new approach to defeating bacterial infections by targeting an innate immune system component in a bid to invigorate the immune response.
In this study, researchers demonstrated that the primary function of one of the innate immune molecules is to suppress inflammation, which in turn dampens the immune response to infections and other threats. Investigators showed the protein works by inhibiting two pathways that control production of specialized molecules that fight infections. ...
After more than 10 years of gathering and analyzing data produced by the U.S. Department of Energy's Tevatron collider, scientists from the CDF and DZero collaborations have found their strongest indication to date for the long-sought Higgs particle. Squeezing the last bit of information out of 500 trillion collisions produced by the Tevatron for each experiment since March 2001, the final analysis of the data does not settle the question of whether the Higgs particle exists, but gets closer to an answer. The Tevatron scientists unveiled their latest results on July 2, ...
The use of an electronic medical record (EMR) for reviewing portal images dramatically improves compliance with timeliness and record keeping, according to a study in the July issue of the Journal of the American College of Radiology. Portal images are used to verify the positioning of patients during daily radiation treatments to improve the accuracy of the radiation field placement, to reduce exposure to normal tissue and to deliver accurate dose to tumor volumes.
"The benefits of the implementation and utilization of an EMR have been well documented. Other studies ...