(Press-News.org) A consortium of nine research centres has obtained the melon genome, a horticultural specie with high economic value around the world. It is the first time that a Spanish initiative that unites private and state-run centres has obtained the complete genome of a higher organism, in this case a plant, which produces flowers and seeds. Also, it has been done by applying massive sequencing technologies.
Besides the complete melon genome, scientists have obtained the particular genomes of seven melon varieties. The study is published in the magazine Proceedings of the National Academy of Sciences (PNAS).
The scientific Project has been lead by Pere Puigdomènech, at the Spanish National Research Council (CSIC), and Jordi Garcia Mas, at the Institute for Research and Technology in Food and Agriculture (IRTA). Both scientists work at the Center for Research in Agricultural Genomics (CRAG), in Barcelona. Also, the team lead by Roderic Guigó, at the Genomic Regulation Center has made an important contribution to the project.
The Melonomics project was launched by the Spanish Genome Foundation. Nine research centres have been involved in it, having the support of 5 companies and of five Spanish autonomous communities.
Results have shown that the melon genome has 450 millions of base pairs and 27.427 genes. It is much bigger than the genome of its nearest "relative', the cucumber that has 360 millions base pairs. "This difference is due mainly to the amplification of transposable elements. We didn't find recent duplications within the genome, which are very common in plant species", highlights Puigdomènech.
"We have identified 411 genes that can be related in disease resistance. They are few but, nevertheless, the melon has a high capacity of adaptation to different environments", explains the CSIC scientist. During the work, when comparing this genome with others that are near philogenetically, they have observed how changes occur to the genome of this species, which is known for its high variability.
Another question of interest is that related to the ripening of the fruit, a process which determines fruit characteristics such as taste and flavour. Scientists have identified up to 89 genes related with some aspects of this process: 26 genes related to the carotenoid accumulation -which gives the colour to the melon flesh- and 63 related to the sugar accumulation and the taste of melon. 21 genes out of the last 63 had never been described before.
"Knowing the genome and the genes related to the characteristics of value for agriculture will allow us to improve this species for obtaining more disease resistant varieties and with better organoleptic properties", points out the IRTA scientist Jordi Garcia Mas.
Melon, cucumber, watermelon and squashes
Melon belongs to the family of cucurbits, that also includes species such as cucumbers, watermelons and squashes. Cucurbits have relatively small genomes. "These are species of high financial interest, especially in the Mediterranian, Asian and African countries. Diseases that affect them, such as the mosaic virus in the case of cucumber or fungi can cause high financial losses. Therefore, we hope the genome sequentiation will have an important impact on improving this crop", says Pere Puigdomènech.
According to figures of 2009 from the Food and Agriculture Organizations (FAO) of the United Nations, the production of melon worldwide is 26 million tones every year. Spain is the fifth biggest producer in the world. Approximately a third part of the production is exported, which makes Spain the biggest exporter of melon.
A collaborative project of many partner institutions
The melon genome project has been lead by the Center for Research in Agricultural Genomics (CRAG), which is a consortium of different institutions and universities, where they have done the sequencing and assembling of the genome. The Center of Genomic Regulation has annotated the genome.
Also, the project has had teams working on it at different centres and universities: the Pompeu Fabra University (Barcelona), the CSIC's Centro de Edafología y Biología Aplicada del Segura of the CSIC (Murcia), the Centro Nacional de Análisis Genómico (Barcelona), the Universidad Politécnica in Valencia and Wisconsin University (U.S.). Furthermore, the company Roche Diagnostics has facilitated technologies in order to help the genome assembling.
The Project, with a budget over 4 millions Euros, has received the financial support of the Spanish Genome Foundation, of five Autonomous Communities -Andalucía, Castilla La Mancha, Catalonia, Madrid and Murcia – and the companies: Semillas Fitó, Syngenta Seeds, Roche Diagnostics, Savia Biotech and Sistemas Genómicos.
INFORMATION:
END
The industry is interested in establishing a biorefinery sector in Denmark that can replace oil-based products with biofriendly materials, chemicals, energy and fuel. But this requires a larger biomass production than we are currently achieving. Scientists from University of Copenhagen and Aarhus University have published an extensive report that shows how we can increase the production of biomass by more than 200% in an environmentally friendly way.
The report called "The ten-million-tonne plan" shows how we can increase the Danish production of biomass from agriculture ...
Experts at The University of Nottingham are the first to create a stable version of a 'trophy molecule' that has eluded scientists for decades.
In research published in the prestigious journal Science, the team of chemists at Nottingham has shown that they can prepare a terminal uranium nitride compound which is stable at room temperature and can be stored in jars in crystallized or powder form.
Previous attempts to prepare uranium-nitrogen triple bonds have required temperatures as low as 5 Kelvin (-268 °C) — roughly the equivalent temperature of interstellar space ...
A new approach to testing medical treatment options could ensure that more patients get the most beneficial treatment for them – but still yield valuable research results that stand up to scientific scrutiny.
The approach tries to overcome a huge chicken-and-egg problem in medical research: Not enough people volunteer for studies of new treatments partly because researchers can't promise the studies will help them -- but without enough volunteers, researchers can't study new treatment options.
But a new "adaptive" way of designing medical studies could help. In a ...
Researchers at Moffitt Cancer Center and colleagues at the University of South Florida, the German Cancer Research Center in Heidelberg, and the International Agency for Research on Cancer in Lyon, France, conducted a case control study and found associations between having antibodies to certain types of cutaneous human papillomavirus (HPV) and a kind of skin cancer called squamous cell carcinoma (SCC).
Their study, the first case-control study to investigate the association between SCC and cutaneous HPV types belonging to five different genera, appeared in a recent ...
Amsterdam, NL, July 2, 2012 – After stroke, patients often suffer from dysphagia, a swallowing disorder that results in greater healthcare costs and higher rates of complications such as dehydration, malnutrition, and pneumonia. In a new study published in the July issue of Restorative Neurology and Neuroscience, researchers have found that transcranial direct current stimulation (tDCS), which applies weak electrical currents to the affected area of the brain, can enhance the outcome of swallowing therapy for post-stroke dysphagia.
"Our pilot study demonstrated that ...
PROVIDENCE, R.I. [Brown University] — What makes laparoscopic surgery "minimally invasive" — instruments enter the patient through narrow tubes — also makes it visually constraining. As they work on different tasks, surgeons all see the same view. What if each surgeon could control a separate view best suited to the specific task? In a new paper, pediatric surgeon Dr. Francois Luks and his team of co-authors at Brown University and Hasbro Children's Hospital report that in a small in vitro trial, surgeons with their own views performed faster and more accurately.
"When ...
Researchers are closer to understanding the biology behind GHB, a transmitter substance in the brain, best known in its synthetic form as the illegal drug fantasy. These findings have just been published in the scientific journal PNAS.
In the 1960s, gamma-hydroxybutyric acid (GHB) was first discovered as a naturally occurring substance in the brain. Since then it has been manufactured as a drug with a clinical application and has also developed a reputation as the illegal drug fantasy and as a date rape drug. Its physiological function is still unknown. Researchers identify ...
Amsterdam, NL, July 2, 2012 – Growing evidence suggests that Parkinson's disease (PD) often starts with non-motor symptoms that precede diagnosis by several years. In the first study to examine patterns in the quality of life of Parkinson' disease patients prior to diagnosis, researchers have documented declines in physical and mental health, pain, and emotional health beginning several years before the onset of the disease and continuing thereafter. Their results are reported in the latest issue of Journal of Parkinson's Disease.
"We observed a decline in physical function ...
(Embargoed) CHAPEL HILL, NC – New research led by a medical geneticist at the University of North Carolina School of Medicine points to an increased risk of autism spectrum disorders (ASDs) among individuals whose parents or siblings have been diagnosed with schizophrenia or bipolar disorder.
The findings were based on a case-control study using population registers in Sweden and Israel, and the degree to which these three disorders share a basis in causation "has important implications for clinicians, researchers and those affected by the disorders," according to a report ...
Research led by St. Jude Children's Research Hospital scientists has identified a possible new approach to defeating bacterial infections by targeting an innate immune system component in a bid to invigorate the immune response.
In this study, researchers demonstrated that the primary function of one of the innate immune molecules is to suppress inflammation, which in turn dampens the immune response to infections and other threats. Investigators showed the protein works by inhibiting two pathways that control production of specialized molecules that fight infections. ...