(Press-News.org) The University of Nottingham has begun the search for a new class of injectable materials that will stimulate stem cells to regenerate damaged tissue in degenerative and age related disorders of the bone, muscle and heart.
The work, which is currently at the experimental stage, could lead to treatments for diseases that currently have no cure. The aim is to produce radical new treatments that will reduce the need for invasive surgery, optimise recovery and reduce the risk of undesirable scar tissue.
The research, which brings together expertise in The University of Nottingham's Malaysia Campus (UNMC) and UK campus, is part of the Rational Bioactive Materials Design for Tissue Generation project (Biodesign). This €11m EU funded research project which involves 21 research teams from across Europe is made up of leading experts in degenerative disease and regenerative medicine.
Kevin Shakesheff, Professor of Advanced Drug Delivery and Tissue Engineering and Head of the School of Pharmacy, said: "This research heralds a step-change in approaches to tissue regeneration. Current biomaterials are poorly suited to the needs of tissue engineering and regenerative medicine. The aim of Biodesign is to develop new materials and medicines that will stimulate tissue regeneration rather than wait for the body to start the process itself. The aim is to fabricate advanced biomaterials that match the basic structure of each tissue so the cells can take over the recovery process themselves."
More effective and affordable treatments
The demand for organ transplants is great, but there are few donors and transplant rejection remains an ever present concern. This has led to the development of an interdisciplinary research field called "regenerative medicine." Researchers within this field are not only looking to help patients requiring organ transplants, but also those with severe burns, muscle injuries, cardiovascular problems or patients with broken bones that are not healing.
In general, the body's wound repair process works in much the same way regardless of what the condition is or which organ is affected. For instance; the sequence of events that follows a heart attack is similar to the process that takes place following spinal-cord injury. The aim of regenerative medicine is to create a 'seed bed' from which tissue can grow. This technique will lead to more effective and affordable treatments for diseases such as cancer and osteoporosis and for patients who have suffered a heart attack or experienced major trauma.
Nanotechnology for drug delivery
Nottingham and UNMC are developing a new class of injectable material that stimulates stem cells to form new blood vessels, heart and bone tissue.
For more information go to: http://tiny.cc/BioDesign
Professor Shakesheff said: "Biodesign brings together some of the best research groups in Europe to develop new therapies that regenerate human tissue. The opportunity to extend the work through links with our Malaysia Campus opens new opportunities to make an impact on the development of regenerative medicine in the Far East."
UNMC is building on its expertise in nanotechnology for drug delivery. Dr Andrew Morris, an expert in transdermal drug delivery at UNMC, said: "Our understanding of genomics and tissue regeneration means that medicines of the future will be much smarter. We are moving away from simple drugs being given to a patient in a tablet and hoping that they will have the desired effect. Here in Malaysia we are looking at synthesising microparticles which can potentially be injected directly into a patient at the site of injury to promote tissue re-growth. These microparticles would act as a scaffold to encourage regrowth in bone tissue, skeletal muscle and potentially even cardiac muscle."
Dr Nashiru Billa, an expert in drug delivery in the School of Pharmacy, said: "This research is going to have a significant impact on patients. The data obtained so far is quite promising. In future you could include in the delivery system anti-cancer drugs that would not only lead to the growth of the tissue but would also help kill the cancer cells within the bone tissue."
International research involving scientists and students
The Biodesign research also offers exciting opportunities for The University of Nottingham's UK based 4th year undergraduate Pharmacy students. Students registered in the UK are going out to Malaysia to complete their final year research projects. They will be carrying out some of the important early stage synthesis work and producing the microparticles.
Dr Morris said: "The undergraduates are the PhD students, the lecturers and professors of the future. From this early stage work we hope to get publications from this and we hope to see their names on the front of the article at the end of the project."
The EU research funding for this project is another significant milestone for the growth of research activity at UNMC. Professor Stephen Doughty, Vice-Provost for Teaching and Learning at UNMC and a member of the Biodesign team said "It is very pleasing once again to see major research grants awarded to top quality researchers at UNMC and to see the full international potential of The University of Nottingham being harnessed in this way."
INFORMATION: END
Bethesda, MD—A new research report published online in the FASEB Journal reveals a connection among sugar, cancer, and dependence on breathing machines--microRNA-320a. In the report, Stanford scientists show that the molecule microRNA-320a is responsible for helping control glycolysis. Glycolysis is the process of converting sugar into energy, which fuels the growth of some cancers, and contributes to the wasting of unused muscles such as the diaphragm when people are using ventilators. Identifying ways to use microRNA-320a to starve tumors and keep unused muscles strong ...
London (July 05 2012 ) -- European experts in cardiovascular medicine will today gather at a two day symposium to address the national agenda on cardiovascular disease prevention, held at Imperial College London and sponsored by leading independent academic and professional publisher SAGE.
One session at the conference, chaired by Professors Joep Perk and David Wood will focus on the new 2012 Joint European Societies' Guidelines on cardiovascular disease prevention in clinical practice, which will appear in August issue (volume 19, issue 4) of the European Society of ...
Feelings of anxiety very effectively prevent people from getting into situations that are too dangerous. Those who have had a terrible experience initially tend to avoid the place of tragedy out of fear. If no other oppressive situation arises, normally the symptoms of fear gradually subside. "The memory of the terrible events is not just erased." states first author, PD Dr. Andras Bilkei Gorzo, from the Institute for Molecular Psychiatry at the University of Bonn. "Those impacted learn rather via an active learning process that they no longer need to be afraid because ...
Frequently recommended in weight-loss diets, dietary proteins have proven effectiveness thanks to their appetite-suppressing effects. A team led by Gilles Mithieux, Director of Inserm's Unit 855 "Nutrition and the Brain" in Lyon, has managed to explain the biological mechanisms behind these properties. The researchers describe in detail the chain reactions triggered by digesting proteins, sending a 'satiety' message to the brain long after a meal. Their results, published on 5 July in the Cell review, will make it possible envisage improved care for obese or overweight ...
Bethesda, MD—If you're concerned about losing your hearing because of noise exposure (earbud deafness syndrome), a new discovery published online in the FASEB Journal offers some hope. That's because scientists from Germany and Canada show that the protein, AMPK, which protects cells during a lack of energy, also activates a channel protein in the cell membrane that allows potassium to leave the cell. This activity is important because this mechanism helps protect sensory cells in the inner ear from permanent damage following acoustic noise exposure. This information could ...
On this July 4th week, U.S. beachgoers are thronging their way to seaside resorts and parks to celebrate with holiday fireworks.
Across the horizon and miles out to sea toward the north, the Atlantic Ocean's own spring and summer ritual is unfolding: the blooming of countless microscopic plant plankton, or phytoplankton.
In what's known as the North Atlantic Bloom, an immense number of phytoplankton burst into color, first "greening" then "whitening" the sea as one species follows another.
In research results published in this week's issue of the journal Science, ...
Copenhagen, Denmark – A landmark conference has agreed key priorities for harnessing the power of information technologies and social networks to understand better the workings of life on Earth, focussing on how biodiversity can continue to sustain human lives and livelihoods.
The Global Biodiversity Informatics Conference (GBIC), gathering some 100 experts from around the world from 2-4 July, identified critical areas in which greater investment and better coordination could give society much better, innovative tools to monitor and manage biological resources. These ...
July 4, 2012, was an historic day in science with researchers at CERN (European Organization for Nuclear Research) announcing the discovery of a new particle that is "consistent with the Higgs boson." It was also an historic day for the University of Rochester. Not only was one of its faculty members an originator of the theory for the Higgs mechanism and the Higgs boson, three of its scientists worked on one of the experiments that led to the CERN discovery.
Physicist Carl Hagen's 1964 article Global Conservation Laws and Massless Particles, co-written by Gerald Guralnik ...
BOSTON, MA—Researchers at Brigham and Women's Hospital (BWH) have discovered a new vaccine candidate for the bacterium Pseudomonas aeruginosa taking advantage of a new mechanism of immunity.
The study was published online in the American Journal of Respiratory and Critical Care Medicine on June 21, 2012.
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections, particularly in patients on respirators, where it can cause so-called ventilator-associated pneumonia, which carries a very high mortality rate. Pseudomonas also causes lung infections in people ...
Bethesda, MD—In what could be a breakthrough in the practical application of epigenetic science, U.K. scientists used human tissue samples to discover that those with osteoarthritis have a signature epigenetic change (DNA methylation) responsible for switching on and off a gene that produces a destructive enzyme called MMP13. This enzyme is known to play a role in the destruction of joint cartilage, making MMP13 and the epigenetic changes that lead to its increased levels, prime targets for osteoarthritis drug development. In addition to offering a new epigenetic path toward ...