(Press-News.org) PASADENA, Calif.—Physicists at the Large Hadron Collider (LHC) in Geneva, Switzerland, have discovered a new particle that may be the long-sought Higgs boson, the fundamental particle that is thought to endow elementary particles with mass.
"This is a momentous time in the history of particle physics and in scientific exploration—the implications are profound," says Harvey Newman, professor of physics at the California Institute of Technology (Caltech). "This is experimental science at its best."
The international team of scientists and engineers—which includes a large contingent from Caltech, led by Newman and Maria Spiropulu, professor of physics—says it needs more data to determine for certain if the particle they've discovered is indeed the Higgs boson predicted by the Standard Model, the theory that describes how all particles interact. The results so far, however, show that it has many of the properties expected for such a particle.
"One of the most exciting aspects of this observation is that the road remains open for a vast range of 'lookalike' alternatives, where any deviation from the Standard Model would point the way to the existence of other new particles or forces of nature," Newman says.
Regardless of the exact identity of the new particle, CERN's scientists say, the highly anticipated discovery heralds a new era in physics.
The physicists revealed their latest results at a seminar at the European Center for Nuclear Research (CERN) in Geneva, which was shared with the world with a live webcast and the EVO (Enabling Virtual Organizations) system developed at Caltech.
The discovery itself is based on the analysis of an unprecedented amount of data that was collected by the two main detectors at the LHC—the Compact Muon Solenoid (CMS) and A Toroidal LHC Apparatus (ATLAS). The data was collected with the LHC running at 7 teraelectron volts (TeV, a unit of energy) in 2011 and 8 TeV in 2012. The Caltech team is part of the CMS collaboration.
Using the CMS detector, the physicists identified signals that point to a new particle with a mass of 125 gigaelectron volts (GeV, a unit of mass; in comparison, the mass of a proton is about 1 GeV). The team running the ATLAS detector, which searches for the Higgs using a different method, reported similar results.
"This is an incredible, exciting moment," says Spiropulu. "Even these early results give us important hints as to how mass in the universe came to be. Together with hundreds of our colleagues Caltech scientists have worked for decades to reach this point: building multiple generations of experiments; designing and building detectors to precisely measure photons, electrons, and muons, which are keys to the discovery; and inventing worldwide systems that empower thousands of physicists throughout the world to collaborate day and night, share and analyze the data, and develop the new techniques leading to this great result."
To search for the Higgs, physicists have had to comb through the remains of trillions of particle collisions produced by the LHC, which accelerates protons around a ring almost five miles wide to nearly the speed of light. As the protons careen toward each other, a small fraction of them collide, creating other particles such as the Higgs. It is estimated that it takes one billion collisions to make just one Higgs boson.
The Higgs is fleeting, however, and quickly decays into lighter particles, which are the traces that allow the Higgs to be detected and analyzed. The Higgs is predicted to decay in several different ways, or channels, each resulting in different particles. CMS focuses mainly on the decay channels that result in two photons or two other particles called Z bosons. It was by measuring and analyzing these and other decay particles that the physicists were able to discover the potential Higgs.
When all the decays are taken into account in combination, the scientists announced, the data for a signal corresponding to a Standard Model Higgs boson have a statistical significance of five sigmas. This means the signal is highly unlikely to be the result of a statistical fluke caused by some rare, background fluctuation. Only when data are significant to five sigmas are physicists confident enough to declare a discovery.
Last December, evidence seen in the data from CMS generated plenty of excitement as a result of an excess of events—a slight surplus in particle collision events over what would have been expected if the Higgs does not exist—with a statistical significance of just three sigmas.
The Higgs boson is the last remaining fundamental particle predicted by the Standard Model yet to be detected, and hopes of detecting it was one of the chief reasons for building the LHC. The LHC accelerator, along with the CMS and ATLAS experiments, are arguably the largest and most complex scientific instruments ever built.
Despite its many successes, the Standard Model is incomplete—it does not incorporate gravity or dark matter, for example. One of the goals of physicists, then, is to develop more complete theories that better explain the composition of the universe and what happened during the first moments after the Big Bang. Discovering the Higgs boson—or a particle like it—is essential for developing these new theories.
The measurements of the new particle, the physicists say, are so far consistent—within statistical uncertainty—with the Higgs boson as predicted by the Standard Model. Still, they need more data to know for sure whether it is the predicted Higgs or something stranger, a Higgs lookalike—a prospect that many theorists have long been anticipating.
By the end of 2012, the Caltech researchers say, the CMS collaboration expects to more than double its current total amount of data. With more data and analysis, the scientists might then be able to confirm whether the particle they announced tonight is indeed the Higgs—and whether it is the Standard Model Higgs or a more exotic version.
INFORMATION:
Written by Marcus Woo
END
The ability to distinguish and isolate rare cells from among a large population of assorted cells has become increasingly important for the early detection of disease and for monitoring disease treatments.
Circulating cancer tumor cells are a perfect example. Typically, there are only a handful of them among a billion healthy cells, yet they are precursors to metastasis, the spread of cancer that causes about 90 percent of cancer mortalities. Such "rogue" cells are not limited to cancer — they also include stem cells used for regenerative medicine and other cell types. ...
Prostate cancer doesn't kill in the prostate — it's the disease's metastasis to other tissues that can be fatal. A University of Colorado Cancer Center study published this week in the Journal of Biological Chemistry shows that prostate cancer cells containing the protein SPDEF continue to grow at the same pace as their SPDEF- cousins, but that these SPDEF+ cells are unable to survive at possible sites of metastasis.
"It's as if these cancer cells with SPDEF can't chew into distant tissue and so are unable to make new homes," says Hari Koul, PhD, investigator at the CU ...
SAN FRANCISCO, July 6, 2012 -- New to meditation and already thinking about quitting? You may have simply chosen the wrong method. A new study published online July 7 in EXPLORE: The Journal of Science and Healing highlights the importance of ensuring that new meditators select methods with which they are most comfortable, rather than those that are most popular.
If they do, they are likely to stick with it, says Adam Burke, the author of the study. If not, there is a higher chance they may abandon meditation altogether, losing out on its myriad personal and medical benefits. ...
San Diego State University researchers at the Donald P. Shiley BioScience Center may have found the secret to helping the immune system fight off the flu before it gets you sick.
A new study published today in the Public Library of Science journal PLoS ONE, finds that EP67, a powerful synthetic protein, is able to activate the innate immune system within just two hours of being administered.
Prior to this study, EP67 had been primarily used as an adjuvant for vaccines, something added to the vaccine to help activate the immune response. But Joy Phillips, Ph.D. a lead ...
A staggering 320 tons of gold and more than 7,500 tons of silver are now used annually to make PCs, cell phones, tablet computers and other new electronic and electrical products worldwide, adding more than $21 billion in value each year to the rich fortunes in metals eventually available through "urban mining" of e-waste, experts say.
Manufacturing these high-tech products requires more than $16 billion in gold and $5 billion in silver: a total of $21 billion -- equal to the GDP of El Salvador -- locked away annually in e-products. Most of those valuable metals will ...
Washington, D.C. (July 2, 2012)– Forty years into the Title IX era, female athletes have risen to prominence and populate the sports landscape. Female viewership, however, has not witnessed the same rise. What sports are women watching (or not), and why? Of the many events in this summer's Olympics, which will be favored by women viewers?
A recent study conducted by Erin Whiteside (University of Tennessee) and Marie Hardin (Pennsylvania State University) explores these questions. The results, published in Communication, Culture & Critique, show that women prefer condensed ...
Women using fertility drugs who did not conceive a 10-plus week pregnancy were at a statistically significant reduced risk of breast cancer compared to nonusers; however, women using the drugs who conceived a 10-plus week pregnancy had a statistically significant increased risk of breast cancer compared to unsuccessfully treated women, but a comparable risk to nonusers, according to a study published July 6 in the Journal of The National Cancer Institute.
Ovulation-stimulating fertility drugs temporarily elevate estrogen levels in women, and estrogen is known to play ...
Cambridge, Mass. - July 6, 2012 - Atmospheric scientists at the Harvard School of Engineering and Applied Sciences (SEAS) and Nanjing University have produced the first "bottom-up" estimates of China's carbon dioxide (CO2) emissions, for 2005 to 2009, and the first statistically rigorous estimates of the uncertainties surrounding China's CO2 emissions.
The independent estimates, rooted in part in measurements of pollutants both at the sources and in the air, may be the most accurate totals to date. The resulting figures offer an unbiased basis on which China might measure ...
Professor Ian Simmonds from the University of Melbourne's School of Earth Sciences co-authored the study and said the new information showed this combined effect at both ground and atmospheric level played a key role in increasing the rate of warming in the Arctic.
"Loss of sea ice contributes to ground level warming while global warming intensifies atmospheric circulation and contributes to increased temperatures higher in the Arctic atmosphere," Professor Simmonds said.
Lead author, Dr James Screen of the School of Earth Sciences at the University of Melbourne said ...
These kinds of experiments are important as they reveal the interaction strength of the X-rays with the liquids and therefore allow for the structural analysis of substances dissolved in solution. "The method will achieve its absolute apprehension when will be applied to metal ions that are part of chemical catalysts used for clean energy production and biocatalysts (protein enzymes) used in biochemical transformation inside the living cells – the team leader Prof. Aziz stated, which is the next milestone in our research progress. Previously, these types of experiments ...