(Press-News.org) Chemical batteries power many different mobile electronic devices, but repeated charging and discharging cycles can wear them out. An alternative energy storage device called an ultracapacitor can be recharged hundreds of thousands of times without degrading, but ultracapacitors have their own disadvantages, including a voltage output that drops precipitously as the device is discharged. Now a researcher from the University of West Florida has designed an ultracapacitor that maintains a near steady voltage. The novel constant-voltage design, which may one day help ultracapacitors find new uses in low-voltage electric vehicle circuits and handheld electronics, is described in the American Institute of Physics' Journal of Renewable and Sustainable Energy.
Standard capacitors store energy in an electric field created when opposite electrical charges collect on two plates separated by a thin insulating material. In ultracapacitors the surface area of the plates is increased with a coating of porous activated carbon, which is packed with tiny holes and cracks that can capture charged particles. The space between the plates is filled with an electrolyte solution containing positive and negative ions. As charge accumulates on the plates, they attract ions, creating a double-layer of stored energy.
In both standard capacitors and ultracapacitors, the voltage drops as the stored charge is released. Most electronic devices, however, require constant voltage to operate. An electronic circuit called a DC-DC converter can change the dropping voltage of the capacitor into a constant voltage output, but the converters experience problems below one volt.
"A significant portion of the energy of the ultracapacitor is held below one volt," notes Ezzat Bakhoum, a professor of electrical engineering at the University of West Florida. "Operation in that region is very difficult because the DC-DC converter cannot function at such low voltage. Applications where the use of an ultracapacitor is precluded because of this problem include low-voltage systems in electric vehicles, hand-held power tools, toys, and cameras, just to name a few."
So Bakhoum has designed an ultracapacitor that maintains a near-constant voltage without a DC-DC converter. The ultracapacitor is fitted with an electromechanical system that can slowly lift the core of the device out of the electrolyte solution as the stored charged is released. As the electrolyte drains away, the device can hold less charge, thus lowering, its capacitance. Since the voltage of the capacitor is related to the ratio of the stored charge to the capacitance, the system maintains a steady voltage as charge is siphoned off.
Bakhoum built and tested a prototype of the new ultracapacitor. After attaching a 35-watt load to the device, he found he could successfully program the voltage to stay within a 4.9 to 4.6 volt range. Testing also showed that the constant-voltage mechanism operates with a 99 percent efficiency or higher. The lifetime of the electromechanical motor is expected to be about the same as the lifetime of the ultracapacitor's core, Bakhoum writes.
"The ultracapacitor is a wonderful new energy storage device that has many advantages by comparison with batteries," says Bakhoum. In addition to their near limitless ability to be recharged, ultracapacitors can release a jolt of energy much more quickly than batteries. One current disadvantage of commercially available ultracapacitors, that they store only a fraction of the energy per unit mass that batteries store, is a challenge that is still being researched. Some groups have experimented, for example, with changing the structure of the electrode to increase surface area, and thus the amount of charge that can be stored.
For Bakhoum, future research steps include modifying the design of the constant-voltage ultracapacitor system so that it can be installed at any angle. He may also explore whether the same type of constant-voltage approach is suitable for new, high-energy-density ultracapacitors.
###
Paper: "Constant Voltage Ultracapacitor"
Link: http://jrse.aip.org/resource/1/jrsebh/v4/i3/p033116_s1
Journal: Journal of Renewable and Sustainable Energy
Author: Ezzat G. Bakhoum (1)
(1) University of West Florida
END
VIDEO:
The difference between the cognitive styles of two monkeys is clearly visible in the neural population vectors for hand movement direction. The instant the target (green) appears, monkey H plans...
Click here for more information.
Anyone who has looked at the jagged recording of the electrical activity of a single neuron in the brain must have wondered how any useful information could be extracted from such a frazzled signal.
But over the past 30 years, researchers ...
New treatments to lessen the severity of the more than 21,000 Traumatic Brain Injury (TBI) cases that occur in Australia each year are on the horizon.
Published today in the leading neurology journal, Brain, a study led by researchers from Monash University's Australian Centre for Blood Diseases (ACBD) revealed how inhibiting certain enzymes decreased the severity of TBI, providing a target for future treatments.
Caused by a blow to the head, often suffered during falls or road crashes, severe TBI can result in long-term disability or death. Effects can include impairments ...
Los Angeles, CA (July 19, 2012) As communities seek new ways to emerge from the recession, many may look to growing their population as a strategy. However, the belief that population growth will bring jobs and economic prosperity for local residents is a myth. These findings are published in a new study in the latest issue of Economic Development Quarterly (published by SAGE).
"Growth may be associated with economic development success; however, it is not the cause of that success," wrote study author Eben Fodor.
Fodor examined the relationship between growth and economic ...
Philadelphia, PA, July 19, 2012 – Neuroeconomics experts and guest editors of the Biological Psychiatry special issue Carla Sharp, John Monterosso, and P. Read Montague in an introductory paper define neuroeconomics as "an interdisciplinary field that brings together psychology, economics, neuroscience, and computational science to investigate how people make decisions."
Neuroeconomics is a relatively new field that traditionally has studied the decision-making process of healthy individuals. It does so by using neuroimaging techniques in conjunction with behavioral ...
Belgian scientists of the Institute of Tropical Medicine (ITM) in Antwerp, Belgium made a breakthrough in bridging high tech molecular biology research on microbial pathogens and the needs of the poorest of the poor. After sequencing the complete genome of Leishmania donovani (a parasite causing one of the most important tropical diseases after malaria) in hundreds of clinical isolates, they identified a series of mutations specific of 'superparasites' and developed a simple assay that should allow tracking them anywhere. This EU-funded research was done in collaboration ...
Synapses are modified through learning. Up until now, scientists believed that a particular form of synaptic plasticity in the brain's hippocampus was responsible for learning spatial relations. This was based on a receptor type for the neurotransmitter glutamate: the NMDA receptor. Researchers at the Max Planck Institute for Medical Research in Heidelberg and Oxford University have now observed that mice develop a spatial memory, even when the NMDA receptor-transmitted plasticity is switched off in parts of their hippocampus. However, if these mice have to resolve a conflict ...
Marine bacteria of the Roseobacter clade are found to be spread widely throughout the oceans of this planet from the tropics to as far as Antarctica. They live freely in the water, in sediments and as symbiotic partners of algae. Special photosynthetic pigments are responsible for their pink colour. Marine bacteria distinguish themselves through an unusually diverse metabolism, which opens interesting opportunities for biotechnological applications. A reconstruction of their evolutionary development will provide a key for scientists to understand the secret for their ecological ...
AMHERST, Mass. – Physicists Andrea Pocar and Krishna Kumar of the University of Massachusetts Amherst, part of an international research team, recently reported results of an experiment conducted at the Enriched Xenon Observatory (EXO), located in a salt mine one-half mile under Carlsbad, New Mexico, part of a decades-long search for evidence of the elusive neutrino-less double-beta decay of Xenon-136.
Pocar, Kumar and the team of 60 scientists using an instrument called the EXO-200 detector, succeeded in setting a new lower limit for the half-life of this ephemeral ...
A new model shows how an elusive type of black hole can be formed in the gas surrounding their supermassive counterparts. In research published in the Monthly Notices of the Royal Astronomical Society, scientists from the American Museum of Natural History, the City University of New York, the Jet Propulsion Laboratory of the California Institute of Technology, and the Harvard-Smithsonian Center for Astrophysics propose that intermediate-mass black holes—light-swallowing celestial objects with masses ranging from hundreds to many thousands of times the mass of the Sun—can ...
A joint study carried out by The University of Nottingham and the multinational food company Unilever has found for the first time that fat in food can reduce activity in several areas of the brain which are responsible for processing taste, aroma and reward.
The research, now available in the Springer journal Chemosensory Perception, provides the food industry with better understanding of how in the future it might be able to make healthier, less fatty food products without negatively affecting their overall taste and enjoyment. Unveiled in 2010, Unilever's Sustainable ...