(Press-News.org) While many bacteria exist as aggressive pathogens, causing diseases ranging from tuberculosis and cholera, to plague, diphtheria and toxic shock syndrome, others play a less malevolent role and some are critical for human health.
In a new study, Cheryl Nickerson and her group at ASU's Biodesign Institute, in collaboration with an international team* including Tom Van de Wiele and lead author Rosemarie De Weirdt at Ghent University, Belgium, explore the role of Lactobaccilus reuteri—a natural resident of the human gut—to protect against foodborne infection.
Their results demonstrate that this beneficial or probiotic organism, which produces an antimicrobial substance known as reuterin, may protect intestinal epithelial cells from infection by the foodborne bacterial pathogen Salmonella.
The study examines for the first time the effect of reuterin during the infection process of mammalian intestinal cells and suggests the efficacy of using probiotic bacteria or their derivatives in future therapies aimed at thwarting Salmonella infection.
Members of the Nickerson lab at the Biodesign Institute's Center for Infectious Diseases and Vaccinology involved in this study were Shameema Sarker and Aurélie Crabbé.
Results of the new study recently appeared in the journal PloS ONE.
Cell cultures: now in 3-D!
Over the past decade, the Nickerson group and their colleagues have developed organotypic three-dimensional (3-D) tissue culture models of the small and large intestine, lung, placenta, bladder, neuronal tissue and vaginal epithelium that mimic key characteristics of the parental tissue, and applied them to study the infectious disease process. Such models offer exciting new insights into host-pathogen interactions, cell proliferation, differentiation and immune function, and are providing a platform to understand normal tissue homeostasis and transition to disease.
For the current study, 3-D colon epithelial cells were used. Nickerson explains that cells derived for study through this technique more faithfully approximate key in vivo responses to S. Typhimurium infection, compared with the traditional monolayer methods, making such cells an ideal model to observe infection processes.
3-D cell culture models are cultured in a special environment within a device known as a Rotating Wall Vessel bioreactor— a cylindrical, rotating apparatus, filled with a culture medium supplying essential nutrients, oxygen and physical forces to the cells. Within the reactor, the natural sedimentation of cells due to gravity is balanced by the bioreactor's rotation, resulting in a gentle tumbling of cells within the media in the chamber.
During the culturing phase, cells attach themselves to tiny porous beads, termed microcarriers, or other scaffolding. Under these conditions, cells are able to respond to molecular and chemical gradients in three-dimensions in a way that approximates their behavior under in vivo conditions, causing the cells to aggregate based on natural cellular affinities and form 3-D tissue-like structures.
"In previous studies, we applied our 3-D intestinal cell cultures as human surrogates to further our understanding of how Salmonella interacts with the intestinal epithelium to cause gastrointestinal disease," Nickerson explains. "We found that these models were able to respond to infection in key ways that mimicked the parental tissue in vivo and which conventional models could not recapitulate. We are excited to advance the use of our 3-D models in the current work to study how commensal intestinal microbes and their products can protect against Salmonella-induced foodborne infection. The results of this study may provide fundamental knowledge for development of new probiotics and other functional food based strategies."
Bacterial Blizzard
A swarm of some hundred trillion bacteria occupies the human body, outnumbering human cells by about 10 to 1. Among these are members of the genus Lactobacilli, some of which have been associated with therapeutic, probiotic properties, including anti-inflammatory and anti-cancer activity.
The current study zeros in on Lactobacillus reuteri—one of the more than 180 species of Lactobacilli. The group investigated the potential of this bacterium to inhibit the early stages of Salmonella infection, seeking to identify plausible mechanisms for such inhibitory effects.
Intestinal infections by non-typhoidal Salmonella strains induce diarrhea and gastroenteritis, and remain a leading source of foodborne illness worldwide. Such infections are acutely unpleasant but self-limiting in healthy individuals. For those with compromised immunity however, they can be deadly and the alarming incidence of multi-drug resistant Salmonella strains has underlined the necessity of more effective therapeutics.
The use of benign microorganisms offers a promising new approach to treating infection from pathogens like Salmonella and indeed, L. reuteri has been shown to help protect against gastrointestinal infection and reduce diarrhea in children.
Safeguarding cells
The origin of L. reuteri's protective role still remains unclear, and the present study investigated whether reuterin, a metabolite produced by L. reuteri during the process of reducing glycerol in the gut, could be one of the keys to protection. While it has been speculated that reuterin acts by regulating immune responses or competing with Salmonella for key binding sites, the current study represents the first in vitro examination of host-pathogen interactions using human intestinal epithelium in the presence of reuterin-producing L. reuteri.
Two approaches were used to study host-pathogen interactions. In the first, 3-D intestinal epithelial cell aggregates were seeded into 24-well plates. Salmonella was added to these intestinal cells along with supernatant of L. reuteri—that is, cell-free culture medium in which the Lactobacillus grew and produced reuterin (obtained by filtering out the bacteria).
In the second approach, L. reuteri was first allowed to produce reuterin in the presence of the 3-D colon cells (seeded into the wells), after which the cells were exposed to Salmonella. Here, the L. reuteri bacteria (in the presence of glycerol) produced reuterin in situ. In both approaches, non-reuterin exposed controls were also tested, and the effect of reuterin on a Salmonella population in the absence of host cells was assessed as well.
L. reuteri regulates response to infection
The results showed a reduction in the Salmonella population (without host cells) after one hour of exposure to a diluted supernatant containing reuterin. Further, the reuterin-containing ferment of L. reuteri was shown to significantly reduce adhesion, invasion and intracellular survival of Salmonella to 3-D colon cells, compared with an untreated control.
In an unexpected twist, the application of L. reuteri supernatant lacking glycerol actually stimulated adhesion, invasion and intracellular survival of Salmonella. The authors speculate that the stimulatory effect observed may have been due to low concentrations of acetic acid, previously shown to stimulate expression of Salmonella virulence-related genes.
Applying the second approach, live L. reuteri were incubated with 3-D epithelial cells and the medium supplemented with glycerol, allowing for in situ production of reuterin. The presence of L. reuteri was shown to reduce the population of Salmonella by diminishing their capacity for adhesion, invasion and intracellular survival and this effect increased when L. reuteri were producing reuterin.
Another interesting detail uncovered in the study is that the effects of reuterin on Salmonella's infectious capacity are increased in the presence of host cells, suggesting that some type of synergistic protection occurs during epithelial infection, potentially involving the combined activity of reuterin and host cell gene-related responses.
Prolonged exposure (of 24 hours or more) to the reuterin-containing supernatant solutions caused a loss of viability in host cells, though shorter exposure times did not appear to adversely affect them. Importantly, the introduction of L. reuteri strains in vivo have been safely carried out in infants and even immuno-compromised adults, indicating that other cell types, host factors or the complex gut microbiota in vivo could counteract the observed cytotoxic effects of reuterin in vitro.
While the authors stress that much work remains, particularly in terms of understanding reuterin's role in the context of a complex gut microbiome, the results are encouraging and suggest a new avenue for fighting Salmonella infection, through the process of glycerol conversion to reuterin by L. reuteri.
INFORMATION:
*The international research team for this project also included Stefan Roos, Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden, Sabine Vollenweider & Christophe Lacroix, of the Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland, and Jan Peter van Pijkeren & Robert A. Britton, Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan.
Written by: Richard Harth
Science Writer: The Biodesign Institute
richard.harth@asu.edu
Beneficial bacteria may help ward off infection
2012-07-21
ELSE PRESS RELEASES FROM THIS DATE:
Meta-analysis: Interventions improve depression in cancer patients
2012-07-21
Despite guidelines recommending screening for depression in cancer patients, it's been unclear whether interventions designed to treat this depression are effective. A study by the University of Colorado Cancer Center and other institutions, published in the Journal of the National Cancer Institute, changes that. This meta-analysis of 10 studies encompassing 1362 patients shows that especially cognitive behavioral therapy and pharmacologic interventions decrease depressive symptoms in cancer patients.
"In the past, we had looked at interventions as a whole – most of which ...
3-D tumor models improve drug discovery success rate
2012-07-21
Imagine millions of cancer cells organized in thousands of small divots. Hit these cells with drugs and when some cells die, you have a candidate for a cancer drug. But a review published this week in the journal Expert Opinion on Drug Discovery argues that these 2D models in fact offer very little information about a potential drug's effects in the body and may often give researchers misleading results.
"Up until the 1980s animal models were the standard for cancer drug discovery. However, with the increase in the number of compounds available for testing and the advent ...
Stem cell research aids understanding of cancer
2012-07-21
The study, published in the journal Stem Cell, adds to our understanding of the role of stem and next stage progenitor cells in tissue regeneration and in the diagnosis and treatment of cancer.
While stem cells are known to reside in organs such as the liver and pancreas, they are difficult to isolate. The new findings show that an antibody developed by the team can be used to capture the stem cells.
Professor Pera, program leader for Stem Cells Australia and Chair of Stem Cell Sciences at the University of Melbourne, said the antibody was able to detect progenitor cells ...
Research warns Asia unlikely to achieve climate, poverty goals unless women's rights are recognized
2012-07-21
BEIJING, CHINA (21 JULY 2012)—New research released today by the Rights and Resources Initiative (RRI) shows that despite more understanding, more resources, and policy recommendations, women continue to be largely marginalized and ignored or exploited in resource management processes throughout Asia – to the detriment of global climate and poverty reduction goals.
This suite of analyses, released today at the International Workshop on Gender and Forest Tenure in Asia and Collective Forest Tenure Reform in China, demonstrate that exclusion and inequality on gender grounds ...
DNDi and Cipla to develop 4-in-1 pediatric antiretroviral drug combination
2012-07-21
On the eve of the XIX International AIDS Conference in Washington, DC, the Drugs for Neglected Diseases initiative (DNDi), a not-for-profit research and development (R&D) organization, announces a new collaboration with Indian drug manufacturer Cipla to develop and produce an improved first-line antiretroviral (ARV) combination therapy specifically adapted to meet the treatment needs of infants and toddlers living with HIV/AIDS. Once delivered, this new pediatric ARV combination could help to accelerate the provision of care to the world's youngest children living with ...
Inaugural cross-disciplinary Public Participation in Scientific Research conference
2012-07-21
Though public participation in scientific research has deep roots in the history of science, in the last few years it has taken off spectacularly from launch pads across the disciplines of science and education, fueled by advances in communications technology and a sea change in a scientific culture now eager to welcome outsiders as collaborators.
Citizen science, crowd-sourced science, DIY research, volunteer monitoring, community participatory action research – the variety of banners flying over participatory science projects reflects the diversity of their origins, ...
Cell research opens new avenues in combating neurodegenerative diseases
2012-07-21
Scientists at the University of Manchester have uncovered how the internal mechanisms in nerve cells wire the brain. The findings open up new avenues in the investigation of neurodegenerative diseases by analysing the cellular processes underlying these conditions.
Dr Andreas Prokop and his team at the Faculty of Life Sciences have been studying the growth of axons, the thin cable-like extensions of nerve cells that wire the brain. If axons don't develop properly this can lead to birth disorders, mental and physical impairments and the gradual decay of brain capacity ...
Dominant deer hinds choose the best food
2012-07-21
VIDEO:
When food is abundant, it seems that animals do not have to compete but dominant deer hinds still uphold rivalry and select the most nutritious food to maintain their status....
Click here for more information.
Deer hinds (Cervus elaphus) have a hierarchical organisation system: the oldest and largest hold the most dominant positions. Therefore, a nutrient rich diet benefits the more dominant hinds, who have preferential access to the best food sources. This allows ...
Stone Age tools help to streamline modern manufacturing
2012-07-21
Innovative research published by the National Physical Laboratory (NPL) and the University of Bradford uses laser microscopes to explore how stone tools were used in prehistory, and the process has helped streamline surface measurement techniques for modern manufacturers.
The analysis of stone tools is a key factor in understanding early human life including social organisation and diet. Archaeologists at the University of Bradford hypothesised that reconstructing past activities was the best way to study what each tool was used for. They proposed to measure the surface ...
Scientists bring low frequency, 'first light' to the Jansky Very Large Array
2012-07-21
WASHINGTON -– U.S. Naval Research Laboratory scientists from the Radio Astrophysics and Sensing Section of the Remote Sensing Division in conjunction with radio astronomers and engineers from the National Radio Astronomy Observatory (NRAO), Socorro, N.M., achieve "First Light" image, May 1, 2012, at frequencies below 1-gigahertz (GHz) on the Jansky Very Large Array (JVLA).
Through the combined expertise of NRL and NRAO scientists and engineers, a new, modern, wide-band receiver system has been developed and is being deployed onboard the JVLA to enable much more sensitive ...