PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Speeding the search for better carbon capture

Berkeley Lab researchers help develop a computer model that identifies the best molecular candidates

Speeding the search for better carbon capture
2012-08-21
(Press-News.org) A computer model that can identify the best molecular candidates for removing carbon dioxide, molecular nitrogen and other greenhouse gases from power plant flues has been developed by researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab), the University of California (UC) Berkeley and the University of Minnesota. The model is the first computational method to provide accurate simulations of the interactions between flue gases and a special variety of the gas-capturing molecular systems known as metal-organic frameworks (MOFs). It should greatly accelerate the search for new low-cost and efficient ways to burn coal without exacerbating global climate change.

Berend Smit, an international authority on molecular simulations who holds joint appointments with Berkeley Lab's Materials Sciences Division and UC Berkeley where he directs Berkeley's Energy Frontier Research Center, co-led the development of this computational model with Laura Gagliardi, a chemistry professor at the University of Minnesota.

"We've developed a novel computational methodology that yields accurate force fields - parameters describing the potential energy of a molecular system - to correctly predict the adsorption of carbon dioxide and molecular nitrogen by MOFs with open metal sites," Smit says. "All previous attempts at developing such a methodology failed and most people gave up trying, but our model is applicable to a broad range of systems and can be used to predict properties of open-site MOFs that have not yet been synthesized."

Smit and Gagliardi are the corresponding authors of a paper describing this research in the journal Nature Chemistry. The paper is titled "Ab initio carbon capture in open-site metal–organic frameworks." Co-authors are Allison Dzubak, Li-Chiang Lin, Jihan Kim, Joseph Swisher, Roberta Poloni and Sergey Maximoff.

Given that the United States holds the world's largest estimated recoverable reserves of coal, coal-burning power plants will continue to be a major source of our nation's electricity generation for the foreseeable future. However, given rising concerns over the contributions of burning coal to global climate change, there is an urgent need for an effective and economical means of removing greenhouse gases from flues before those gases enter the atmosphere. Current technologies proposed for capturing greenhouse gas emissions, based on amines or other molecular systems, would use about one-third of the energy generated by the power plants. This "parasitic energy" would substantially drive up the price of electricity.

MOFs are crystalline molecular systems that can serve as storage vessels with a sponge-like capacity for capturing and containing carbon dioxide and other gases. MOFs consist of a metal oxide center surrounded by organic "linker" molecules to form a highly porous three-dimensional crystal framework. When a solvent molecule is applied during the formation of the MOF and is subsequently removed, the result is an unsaturated "open" metal site MOF that has an especially strong affinity for carbon dioxide.

"MOFs have an extremely large internal surface area and, compared to other common adsorbents, promise very specific customization of their chemistry and could dramatically lower parasitic energy costs in coal-burning power plants," Smit says. "However, there are potentially millions of variations of MOFs and since from a practical standpoint we can only synthesize a very small fraction of these materials, the search for the right ones could take years. Our model saves this time by enabling us to synthesize only those that are most ideal."

Force field models developed to predict the adsorption properties of other MOFs typically underestimate the properties for open metal site MOFs by two orders of magnitude. This is because open metal site MOFs impose very different chemical environments from the MOFs that were considered in the original development of force field models. Smit and his colleagues met the challenge of open site MOFs using state-of-the-art quantum chemical calculations and a strategy based on the non-empirical model potential (NEMO) methodology.

"Under this NEMO methodology, the total electronic interaction energy obtained from quantum chemical calculations is decomposed into various contributing factors, such as electrostatic, repulsive, dispersion and so on," Smit says. "With the model we developed we were able to reproduce the experimental adsorption isotherms of carbon dioxide and molecular nitrogen and correctly predict the mixture isotherms at flue-gas conditions in Mg-MOF-74, an open metal site MOF that has emerged as one of the most promising for carbon dioxide capture."

The generality of their methodology should enable Smit and his colleagues to develop force field models for broad combinations of different metals, linkers and topologies. Work is already underway to apply the model to new amine-based systems for removing carbon dioxide from flue exhaust.

INFORMATION:

This research was supported by DOE's Office of Science in part through the Center for Gas Separations, an Energy Frontier Research Center, and the by DOE's Advanced Research Projects Agency-Energy (ARPA-E), and by the Deutsche Forschungsgemeinschaft. Researchers made use of Berkeley Lab's National Energy Research Scientific Computing Center and Molecular Foundry, facilities that are also supported by the DOE Office of Science.

Lawrence Berkeley National Laboratory (Berkeley Lab) addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

[Attachments] See images for this press release:
Speeding the search for better carbon capture

ELSE PRESS RELEASES FROM THIS DATE:

It's always sunny in Caltech Lab

Its always sunny in Caltech Lab
2012-08-21
PASADENA, Calif.—In orbit around Earth is a wide range of satellites that we rely on for everything from television and radio feeds to GPS navigation. Although these spacecraft soar high above storms on Earth, they are still vulnerable to weather—only it's weather from the sun. Large solar flares—or plasma that erupts from the sun's surface—can cause widespread damage, both in space and on Earth, which is why researchers at the California Institute of Technology (Caltech) are working to learn more about the possible precursors to solar flares called plasma loops. Now, they ...

Sea life 'facing major shock'

2012-08-21
Life in the world's oceans faces far greater change and risk of large-scale extinctions than at any previous time in human history, a team of the world's leading marine scientists has warned. The researchers from Australia, the US, Canada, Germany, Panama, Norway and the UK have compared events which drove massive extinctions of sea life in the past with what is observed to be taking place in the seas and oceans globally today. Three of the five largest extinctions of the past 500 million years were associated with global warming and acidification of the oceans – trends ...

Marine species at risk unless drastic protection policies put in place

2012-08-21
LIVERMORE, Calif. -- Many marine species will be harmed or won't survive if the levels of carbon dioxide continue to increase. Current protection policies and management practices are unlikely to be enough to save them. Unconventional, non-passive methods to conserve marine ecosystems need to be considered if various marine species are to survive. This is the conclusion of a group of scientists led by University of California, Santa Cruz researcher and Lawrence Livermore National Laboratory visiting scientist Greg Rau, and includes Elizabeth McLeod of The Nature Conservancy ...

Intense bursts of star formation drive fierce galactic winds

2012-08-21
Fierce galactic winds powered by an intense burst of star formation may blow gas right out of massive galaxies, shutting down their ability to make new stars. Sifting through images and data from three telescopes, a team of astronomers found 29 objects with outflowing winds measuring up to 2,500 kilometers per second, an order of magnitude faster than most observed galactic winds. "They're nearly blowing themselves apart," said Aleksandar Diamond-Stanic, a fellow at the University of California's Southern California Center for Galaxy Evolution, who led the study. "Most ...

Halo of neutrinos alters physics of exploding stars

2012-08-21
Sparse halos of neutrinos within the hearts of exploding stars exert a previously unrecognized influence on the physics of the explosion and may alter which elements can be forged by these violent events. John Cherry, a graduate student at UC San Diego, models stellar explosions, including a type called a core-collapse supernova. As these stars run out of fuel, their cores suddenly collapse to form a neutron star, which quickly rebounds sending seas of neutrinos through the surrounding stellar envelope and out into space. Even as the collapsed core is rebounding, the ...

WiggleZ confirms the big picture of the Universe

2012-08-21
We know that stars group together to form galaxies, galaxies clump to make clusters and clusters gather to create structures known as superclusters. At what scale though, if at all, does this Russian doll-like structure stop? Scientists have been debating this very question for decades because clustering on large scales would be in conflict with our 'standard model' of cosmology. The current model is based on Einstein's equations assuming everything is smooth on the largest scales. If matter were instead clumpy on very large scales, then the entire model would need to be ...

'CSI' technology holds potential in everyday medicine

2012-08-21
PHILADELPHIA, Aug. 21, 2012 — A scientific instrument featured on CSI and CSI: Miami for instant fingerprint analysis is forging another life in real-world medicine, helping during brain surgery and ensuring that cancer patients get effective doses of chemotherapy, a scientist said here today. The report on technology already incorporated into instruments that miniaturize room-size lab instrumentation into devices the size of a shoebox was part of the 244th National Meeting & Exposition of the American Chemical Society, the world's largest scientific society. The meeting, ...

New version of 150-year-old law could ease student debt and college funding cutbacks

2012-08-21
PHILADELPHIA, Aug. 21, 2012 — Members of a panel today commemorating the 150th anniversary of federal legislation that transformed college education for people in the 19th and 20th centuries said that a 21st century counterpart to the Morrill Act of 1862 could ease the staggering load of student debt and help colleges and universities cope with state funding cutbacks. "A 21st century Morrill Act would be a wonderful symbolic and tangible move toward reinvesting in public higher education," Amy Bix, Ph.D., said in an interview prior to her presentation at the 244th National ...

In your future: More healthful foods to nourish the non-human you

2012-08-21
PHILADELPHIA, Aug. 21, 2012 — The focus of nutrition for good health is quietly shifting to include consumption of food ingredients specifically designed to nourish the non-human cells that comprise 80 percent of the cells in the typical person, an authority on the topic said here today. Speaking at the 244th National Meeting & Exposition of the American Chemical Society, the world's largest scientific society, Robert Rastall, Ph.D., cited several factors driving these so-called "prebiotic" ingredients toward more foods. Food scientists, for instance, are developing new ...

New solar panels made with more common metals could be cheaper and more sustainable

2012-08-21
PHILADELPHIA, Aug. 21, 2012 — With enough sunlight falling on home roofs to supply at least half of America's electricity, scientists today described advances toward the less-expensive solar energy technology needed to roof many of those homes with shingles that generate electricity. Shingles that generate electricity from the sun, and can be installed like traditional roofing, already are a commercial reality. But the advance ― a new world performance record for solar cells made with "earth-abundant" materials ― could make them more affordable and ease the ...

LAST 30 PRESS RELEASES:

Why do plants transport energy so efficiently and quickly?

AI boosts employee work experiences

Neurogenetics leader decodes trauma's imprint on the brain through groundbreaking PTSD research

High PM2.5 levels in Delhi-NCR largely independent of Punjab-Haryana crop fires

Discovery of water droplet freezing steps bridges atmospheric science, climate solutions

Positive emotions plus deep sleep equals longer-lasting perceptual memories

Self-assembling cerebral blood vessels: A breakthrough in Alzheimer’s treatment

Adverse childhood experiences in firstborns associated with poor mental health of siblings

Montana State scientists publish new research on ancient life found in Yellowstone hot springs

Generative AI bias poses risk to democratic values

Study examines how African farmers are adapting to mountain climate change

Exposure to air pollution associated with more hospital admissions for lower respiratory infections

Microscopy approach offers new way to study cancer therapeutics at single-cell level

How flooding soybeans in early reproductive stages impacts yield, seed composition

Gene therapy may be “one shot stop” for rare bone disease

Protection for small-scale producers and the environment?

Researchers solve a fluid mechanics mystery

New grant funds first-of-its-kind gene therapy to treat aggressive brain cancer

HHS external communications pause prevents critical updates on current public health threats

New ACP guideline on migraine prevention shows no clinically important advantages for newer, expensive medications

Revolutionary lubricant prevents friction at high temperatures

Do women talk more than men? It might depend on their age

The right kind of fusion neutrons

The cost of preventing extinction of Australia’s priority species

JMIR Publications announces new CEO

NCSA awards 17 students Fiddler Innovation Fellowships

How prenatal alcohol exposure affects behavior into adulthood

Does the neuron know the electrode is there?

Vilcek Foundation celebrates immigrant scientists with $250,000 in prizes

Age and sex differences in efficacy of treatments for type 2 diabetes

[Press-News.org] Speeding the search for better carbon capture
Berkeley Lab researchers help develop a computer model that identifies the best molecular candidates