(Press-News.org) When it comes to applications like standoff sensing — using lasers to detect gas, explosives, or other materials from a safe distance — the laser's strength is of the utmost importance. A stronger and purer beam means devices can sense danger more accurately from a greater distance, which translates into safer workers, soldiers, and police officers.
Northwestern University researchers have developed a new resonator that creates the purest, brightest, and most powerful single-mode quantum cascade lasers yet at the 8-12 micron range, a wavelength of great interest for both military and industrial use.
A paper describing the findings, "Angled Cavity Broad Area Quantum Cascade Lasers," was published August 21 in the journal Applied Physics Letters.
Infrared radiation in the 8-12 micron range is of interest for military and industrial use equally, as almost all chemicals (including nerve gases and toxic industrial chemicals) can be identified by infrared absorption in this range. In addition, the atmosphere is relatively transparent in this wavelength range, which allows for sensing from a distance.
But to be successful, standoff sensing applications require that laser sources be high-powered, single-mode, and possess good beam quality. Incorporating all three qualities in a single device is a significant challenge, and many sophisticated structures have been proposed with little success.
Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science in the McCormick School of Engineering and Applied Science, and her group have created a new laser technology that controls both wavelength and beam quality. The feat is achieved through the use of a new type of "distributed feedback" mechanism called Β-DFB, a simple diffractive feedback in an angled laser cavity.
"Our resonator is the most promising device for creating high-power, single-mode laser sources with good beam quality, and it is inexpensive and can be realized at room temperature," said Razeghi, who leads the Center for Quantum Devices (CQD). "Furthermore the design can be applied to a wide range of semiconductor lasers at any wavelength."
Razeghi and her group demonstrated >6 watts of peak power with nearly diffraction-limited beam quality at a wavelength of 10.4 microns — the highest power single-mode semiconductor laser demonstrated at a wavelength greater than 10 microns. Refinement of the design, particularly related to optimization of the laser cavity design and improvement of the gain medium, are expected to increase the output power significantly.
The development of the Β-DFB is complementary to active research efforts within CQD, but is not yet directly funded.
### END
Researchers develop simplified approach for high-power, single-mode lasers
2012-08-24
ELSE PRESS RELEASES FROM THIS DATE:
Good news from the bad drought: Gulf 'Dead Zone' smallest in years, says Texas A&M expert
2012-08-24
The worst drought to hit the United States in at least 50 years does have one benefit: it has created the smallest "dead zone" in the Gulf of Mexico in years, says a Texas A&M University researcher who has just returned from gulf waters.
Oceanography professor Steve DiMarco, one of the world's leading authorities on the dead zone, says he and other Texas A&M researchers and graduate students analyzed the Gulf Aug. 15-21 and covered more than 1,200 miles of cruise track, from Texas to Louisiana. The team found no hypoxia off the Texas coast while only finding hypoxia near ...
ChemCam laser first analyses yield beautiful results
2012-08-24
LOS ALAMOS, N.M., August 23, 2012 — Members of the Mars Science Laboratory Curiosity rover ChemCam team, including Los Alamos National Laboratory scientists, squeezed in a little extra target practice after zapping the first fist-sized rock that was placed in the laser's crosshairs last weekend.
Much to the delight of the scientific team, the laser instrument has fired nearly 500 shots so far that have produced strong, clear data about the composition of the Martian surface.
"The spectrum we have received back from Curiosity is as good as anything we looked at on Earth," ...
Flat lens offers a perfect image
2012-08-24
Cambridge, Mass. – August 23, 2012 – Applied physicists at the Harvard School of Engineering and Applied Sciences (SEAS) have created an ultrathin, flat lens that focuses light without imparting the distortions of conventional lenses.
At a mere 60 nanometers thick, the flat lens is essentially two-dimensional, yet its focusing power approaches the ultimate physical limit set by the laws of diffraction.
Operating at telecom wavelengths (i.e., the range commonly used in fiber-optic communications), the new device is completely scalable, from near-infrared to terahertz ...
IBN develops superior fuel cell material
2012-08-24
Singapore, August 24, 2012 – Using a mixture of gold, copper and platinum nanoparticles, IBN researchers have developed a more powerful and longer lasting fuel cell material. This breakthrough was published recently in leading journal, Energy and Environmental Science.
Fuel cells are a promising technology for use as a source of electricity to power electronic devices, vehicles, military aircraft and equipment. A fuel cell converts the chemical energy from hydrogen (fuel) into electricity through a chemical reaction with oxygen. A fuel cell can produce electricity continuously ...
Most mutations come from dad
2012-08-24
Humans inherit more than three times as many mutations from their fathers as from their mothers, and mutation rates increase with the father's age but not the mother's, researchers have found in the largest study of human genetic mutations to date.
The study, based on the DNA of around 85,000 Icelanders, also calculates the rate of human mutation at high resolution, providing estimates of when human ancestors diverged from nonhuman primates. It is one of two papers published this week by the journal Nature Genetics as well as one published at Nature that shed dramatic ...
Survival statistics show hard fight when malignant brain tumors appear at multiple sites
2012-08-24
LOS ANGELES (Embargoed until 10 a.m. EDT on Aug. 24, 2012) – When aggressive, malignant tumors appear in more than one location in the brain, patient survival tends to be significantly shorter than when the disease starts as a single tumor, even though patients in both groups undergo virtually identical treatments, according to research at Cedars-Sinai Medical Center's Maxine Dunitz Neurosurgical Research Institute.
"We've known that certain independent factors, such as age at diagnosis, amount of residual tumor after surgery, and the patient's functional status are useful ...
Bigger creatures live longer, travel farther for a reason
2012-08-24
DURHAM, N.C. -- A long-standing mystery in biology about the longer lifespans of bigger creatures may be explained by the application of a physical law called the Constructal Law (www.constructal.org).
What this law proposes is that anything that flows -- a river, bloodstream or highway network -- will evolve toward the same basic configuration out of a need to be more efficient. And, as it turns out, that same basic law applies to all bodies in motion, be they animals or tanker trucks, says Adrian Bejan, the J.A. Jones Professor of mechanical engineering at Duke and ...
New model gives hands-on help for learning the secrets of molecules
2012-08-24
For biology researchers, the complex world of molecular proteins – where tens of thousands of atoms can comprise a single protein – may be getting clearer with the help of a new soft, transparent, and squishy silicone model they can hold in their hands. Its advantage over traditional computer and solid models is that it is mostly transparent and easy to manipulate, which will help researchers more intuitively understand protein structures, positions, and interactions. The models will enable researchers to quickly and collaboratively see, touch, and test ideas about molecular ...
Modeling metastasis
2012-08-24
Cancer metastasis, the escape and spread of primary tumor cells, is a common cause of cancer-related deaths. But metastasis remains poorly understood. Studies indicate that when a primary tumor breaks through a blood vessel wall, blood's "stickiness" tears off tumor cells the way a piece of tape tears wrapping paper. Until now, no one knew the physical forces involved in this process, the first step in metastasis. Using a statistical technique employed by animators, scientists created a new computer simulation that reveals how cancer cells enter the bloodstream. The researchers ...
The end of an era? Branding horses does not enable them to be identified
2012-08-24
There are many reasons why it is important to be able to identify farm animals, horses and small companion animals. Unique identification marks are essential for ensuring the correctness of breeding programmes, for preventing the spread of disease and for eliminating the possibility of deceit in competitions or when animals are sold. The traditional method of marking larger farm animals relies on branding with hot irons or on ear-tagging but this is deemed inappropriate for use on dogs and cats, which are identified by the implant of a microchip transponder. Until recently, ...