PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Weighing molecules 1 at a time

Caltech-led physicists create first-ever mechanical device that measures the mass of a single molecule

Weighing molecules 1 at a time
2012-08-27
(Press-News.org) PASADENA, Calif.—A team led by scientists at the California Institute of Technology (Caltech) have made the first-ever mechanical device that can measure the mass of individual molecules one at a time.

This new technology, the researchers say, will eventually help doctors diagnose diseases, enable biologists to study viruses and probe the molecular machinery of cells, and even allow scientists to better measure nanoparticles and air pollution.

The team includes researchers from the Kavli Nanoscience Institute at Caltech and Commissariat à l'Energie Atomique et aux Energies Alternatives, Laboratoire d'électronique des technologies de l'information (CEA-LETI) in Grenoble, France. A description of this technology, which includes nanodevices prototyped in CEA-LETI's facilities, appears in the online version of the journal Nature Nanotechnology on August 26.

The device—which is only a couple millionths of a meter in size—consists of a tiny, vibrating bridge-like structure. When a particle or molecule lands on the bridge, its mass changes the oscillating frequency in a way that reveals how much the particle weighs.

"As each particle comes in, we can measure its mass," says Michael Roukes, the Robert M. Abbey Professor of Physics, Applied Physics, and Bioengineering at Caltech. "Nobody's ever done this before."

The new instrument is based on a technique Roukes and his colleagues developed over the last 12 years. In work published in 2009, they showed that a bridge-like device—called a nanoelectromechanical system (NEMS) resonator—could indeed measure the masses of individual particles, which were sprayed onto the apparatus. The difficulty, however, was that the measured shifts in frequencies depended not only on the particle's actual mass, but also on where the particle landed. Without knowing the particle's landing site, the researchers had to analyze measurements of about 500 identical particles in order to pinpoint its mass.

But with the new and improved technique, the scientists need only one particle to make a measurement. "The critical advance that we've made in this current work is that it now allows us to weigh molecules—one by one—as they come in," Roukes says.

To do so, the researchers analyzed how a particle shifts the bridge's vibrating frequency. All oscillatory motion is composed of so-called vibrational modes. If the bridge just shook in the first mode, it would sway side to side, with the center of the structure moving the most. The second vibrational mode is at a higher frequency, in which half of the bridge moves sideways in one direction as the other half goes in the opposite direction, forming an oscillating S-shaped wave that spans the length of the bridge. There is a third mode, a fourth mode, and so on. Whenever the bridge oscillates, its motion can be described as a mixture of these vibrational modes.

The team found that by looking at how the first two modes change frequencies when a particle lands, they could determine the particle's mass and position, explains Mehmet Selim Hanay, a postdoctoral researcher in Roukes's lab and first author of the paper. "With each measurement we can determine the mass of the particle, which wasn't possible in mechanical structures before."

Traditionally, molecules are weighed using a method called mass spectroscopy, in which tens of millions of molecules are ionized—so that they attain an electrical charge—and then interact with an electromagnetic field. By analyzing this interaction, scientists can deduce the mass of the molecules.

The problem with this method is that it does not work well for more massive particles—like proteins or viruses—which have a harder time gaining an electrical charge. As a result, their interactions with electromagnetic fields are too weak for the instrument to make sufficiently accurate measurements.

The new device, on the other hand, does work well for large particles. In fact, the researchers say, it can be integrated with existing commercial instruments to expand their capabilities, allowing them to measure a wider range of masses.

The researchers demonstrated how their new tool works by weighing a molecule called immunoglobulin M (IgM), an antibody produced by immune cells in the blood. By weighing each molecule—which can take on different structures with different masses in the body—the researchers were able to count and identify the various types of IgM. Not only was this the first time a biological molecule was weighed using a nanomechanical device, but the demonstration also served as a direct step toward biomedical applications. Future instruments could be used to monitor a patient's immune system or even diagnose immunological diseases. For example, a certain ratio of IgM molecules is a signature of a type of cancer called Waldenström macroglobulinemia.

In the more distant future, the new instrument could give biologists a view into the molecular machinery of a cell. Proteins drive nearly all of a cell's functions, and their specific tasks depend on what sort of molecular structures attach to them—thereby adding more heft to the protein—during a process called posttranslational modification. By weighing each protein in a cell at various times, biologists would now be able to get a detailed snapshot of what each protein is doing at that particular moment in time.

Another advantage of the new device is that it is made using standard, semiconductor fabrication techniques, making it easy to mass-produce. That's crucial, since instruments that are efficient enough for doctors or biologists to use will need arrays of hundreds to tens of thousands of these bridges working in parallel. "With the incorporation of the devices that are made by techniques for large-scale integration, we're well on our way to creating such instruments," Roukes says. This new technology, the researchers say, will enable the development of a new generation of mass-spectrometry instruments.

"This result demonstrates how the Alliance for Nanosystems VLSI, initiated in 2006, creates a favorable environment to carry out innovative experiments with state-of-the-art, mass-produced devices," says Laurent Malier, the director of CEA-LETI. The Alliance for Nanosystems VLSI is the name of the partnership between Caltech's Kavli Nanoscience Institute and CEA-LETI. "These devices," he says,"will enable commercial applications, thanks to cost advantage and process repeatability."

INFORMATION:

In addition to Roukes and Hanay, the other researchers on the Nature Nanotechnology paper, "Single-protein nanomechanical mass spectrometry in real time," are Caltech graduate students Scott Kelber and Caryn Bullard; former Caltech research physicist Akshay Naik (now at the Centre for Nano Science and Engineering in India); Caltech research engineer Derrick Chi; and Sébastien Hentz, Eric Colinet, and Laurent Duraffourg of CEA-LETI's Micro and Nanotechnologies innovation campus (MINATEC). Support for this work was provided by the Kavli Nanoscience Institute at Caltech, the National Institutes of Health, the National Science Foundation, the Fondation pour la Recherche et l'Enseignement Superieur from the Institut Merieux, the Partnership University Fund of the French Embassy to the U.S.A., an NIH Director's Pioneer Award, the Agence Nationale pour la Recherche through the Carnot funding scheme, a Chaire d'Excellence from Fondation Nanosciences, and European Union CEA Eurotalent Fellowships.

Written by Marcus Woo

[Attachments] See images for this press release:
Weighing molecules 1 at a time

ELSE PRESS RELEASES FROM THIS DATE:

Controlling gene expression: How chromatin remodelers block a histone pass

Controlling gene expression: How chromatin remodelers block a histone pass
2012-08-27
KANSAS CITY, MO—Two opposing teams battle it out to regulate gene expression on the DNA playing field. One, the activators, keeps DNA open to enzymes that transcribe DNA into RNA. Their repressor opponents antagonize that effort by twisting DNA into an inaccessible coil around histone proteins, an amalgam called chromatin, effectively blocking access to DNA by enzymes that elongate an RNA strand. Both teams maneuver by chemically modifying histones—the activators by decorating histones with acetyl groups—let's call them green flags—causing them to loosen their grip on ...

Compound discovered that boosts effect of vaccines against HIV and flu

2012-08-27
Oxford University scientists have discovered a compound that greatly boosts the effect of vaccines against viruses like flu, HIV and herpes in mice. An 'adjuvant' is a substance added to a vaccine to enhance the immune response and offer better protection against infection. The Oxford University team, along with Swedish and US colleagues, have shown that a type of polymer called polyethyleneimine (PEI) is a potent adjuvant for test vaccines against HIV, flu and herpes when given in mice. The researchers were part-funded by the UK Medical Research Council and report ...

Merging the biological and the electronic

2012-08-27
Harvard scientists have, for the first, time created a type of "cyborg" tissue by embedding a three-dimensional network of functional, bio-compatible nanoscale wires into engineered human tissues. As described in a paper published August 26 in Nature Materials, a multi-institutional research team led by Charles M. Lieber, the Mark Hyman, Jr. Professor of Chemistry at Harvard and Daniel Kohane, a Harvard Medical School professor in the Department of Anesthesia at Children's Hospital Boston developed a system for creating nanoscale "scaffolds" which could be seeded with ...

Manipulating the microbiome could help manage weight

2012-08-27
Vaccines and antibiotics may someday join caloric restriction or bariatric surgery as a way to regulate weight gain, according to a new study focused on the interactions between diet, the bacteria that live in the bowel, and the immune system. Bacteria in the intestine play a crucial role in digestion. They provide enzymes necessary for the uptake of many nutrients, synthesize certain vitamins and boost absorption of energy from food. Fifty years ago, farmers learned that by tweaking the microbial mix in their livestock with low-dose oral antibiotics, they could accelerate ...

Scientists identify new gene that influences survival in ALS

2012-08-27
WORCESTER, MA — A team of scientists, including faculty at the University of Massachusetts Medical School (UMMS), have discovered a gene that influences survival time in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease). The study, published today in Nature Medicine, describes how the loss of activity of a receptor called EphA4 substantially extends the lifespan of people with the disease. When coupled with a UMMS study published last month in Nature identifying a new ALS gene (profilin-1) that also works in conjunction with EphA4, these findings point ...

Researchers develop method to grow artificial tissues with embedded nanoscale sensors

2012-08-27
Boston, Mass.—A multi-institutional research team has developed a method for embedding networks of biocompatible nanoscale wires within engineered tissues. These networks—which mark the first time that electronics and tissue have been truly merged in 3D—allow direct tissue sensing and potentially stimulation, a potential boon for development of engineered tissues that incorporate capabilities for monitoring and stimulation, and of devices for screening new drugs. The researcher team—led by Daniel Kohane, MD, PhD, in the Department of Anesthesia at Boston Children's Hospital; ...

Pitt: Targeted oxidation-blocker prevents secondary damage after traumatic brain injury

2012-08-27
PITTSBURGH, Aug. 26, 2012 – Treatment with an agent that blocks the oxidation of an important component of the mitochondrial membrane prevented the secondary damage of severe traumatic brain injury and preserved function that would otherwise have been impaired, according to a research team from the University of Pittsburgh School of Medicine, Graduate School of Public Health and Department of Chemistry in a report published online today in Nature Neuroscience. Annually, an estimated 1.7 million Americans sustain a traumatic brain injury (TBI) due to traffic accidents, ...

Vitamin B12 deficiency: Tracking the genetic causes

2012-08-27
Vitamin B12 is essential to human health. However, some people have inherited conditions that leave them unable to process vitamin B12. As a result they are prone to serious health problems, including developmental delay, psychosis, stroke and dementia. An international research team recently discovered a new genetic disease related to vitamin B12 deficiency by identifying a gene that is vital to the transport of vitamin into the cells of the body. This discovery will help doctors better diagnose this rare genetic disorder and open the door to new treatments. The findings ...

Obese and overweight women face increased risk of recurrence of most common type of breast cancer

2012-08-27
Extra pounds—even within the overweight but not obese range—are linked to a higher risk of recurrence of the most common type of breast cancer despite optimal cancer treatment, according to a new study published early online in CANCER, a peer-reviewed journal of the American Cancer Society. The study's results suggest that extra body fat causes hormonal changes and inflammation that may drive some cases of breast cancer to spread and recur despite treatment. Women who are obese when they are diagnosed with breast cancer have an increased risk of dying prematurely compared ...

Nutrition tied to improved sperm DNA quality in older men

2012-08-27
A new study led by scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) found that a healthy intake of micronutrients is strongly associated with improved sperm DNA quality in older men. In younger men, however, a higher intake of micronutrients didn't improve their sperm DNA. In an analysis of 80 healthy male volunteers between 22 and 80 years of age, the scientists found that men older than 44 who consumed the most vitamin C had 20 percent less sperm DNA damage compared to men older than 44 who consumed the least vitamin ...

LAST 30 PRESS RELEASES:

Yo-yo dieting may significantly increase kidney disease risk in people with type 1 diabetes

Big cities fuel inequality

Financial comfort and prosociality

Painted lady butterflies migrations and genetics

Globetrotting not in the genes

Patient advocates from NCCN guidelines panels share their ‘united by unique’ stories for world cancer day

Innovative apatite nanoparticles for advancing the biocompatibility of implanted biodevices

Study debunks nuclear test misinformation following 2024 Iran earthquake

Quantum machine offers peek into “dance” of cosmic bubbles

How hungry fat cells could someday starve cancer to death

Breakthrough in childhood brain cancer research could heal treatment-resistant tumors, keep them in remission

Research discovery halts childhood brain tumor before it forms

Scientists want to throw a wrench in the gears of cancer’s growth

WSU researcher pioneers new study model with clues to anti-aging

EU awards €5 grant to 18 international researchers in critical raw materials, the “21st century's gold”

FRONTIERS launches dedicated call for early-career science journalists

Why do plants transport energy so efficiently and quickly?

AI boosts employee work experiences

Neurogenetics leader decodes trauma's imprint on the brain through groundbreaking PTSD research

High PM2.5 levels in Delhi-NCR largely independent of Punjab-Haryana crop fires

Discovery of water droplet freezing steps bridges atmospheric science, climate solutions

Positive emotions plus deep sleep equals longer-lasting perceptual memories

Self-assembling cerebral blood vessels: A breakthrough in Alzheimer’s treatment

Adverse childhood experiences in firstborns associated with poor mental health of siblings

Montana State scientists publish new research on ancient life found in Yellowstone hot springs

Generative AI bias poses risk to democratic values

Study examines how African farmers are adapting to mountain climate change

Exposure to air pollution associated with more hospital admissions for lower respiratory infections

Microscopy approach offers new way to study cancer therapeutics at single-cell level

How flooding soybeans in early reproductive stages impacts yield, seed composition

[Press-News.org] Weighing molecules 1 at a time
Caltech-led physicists create first-ever mechanical device that measures the mass of a single molecule