(Press-News.org) It just got easier to pinpoint biological hot spots in the world's oceans where some inhabitants are smaller than, well, a pinpoint.
Microscopic algae are called phytoplankton and range from one to hundreds of microns in size – the smallest being 1/100th the size of a human hair. But as tiny as they may be, communities of the phytoplankton south of Vancouver Island, British Columbia, are big players when it comes to carbon: They take up 50 percent of the carbon dioxide going from the atmosphere into the oceans there.
"We thought that had to be a mistake at first," says Francois Ribalet, a UW post-doctoral researcher in oceanography and lead author of a Proceedings of the National Academy of Sciences paper on the discovery published online in September.
"They are such small cells to do so much," he says.
Phytoplankton, like plants on land, take up carbon from carbon dioxide during photosynthesis to build cells. Phytoplankton anchor the oceanic food web so where one finds a lot of phytoplankton, one usually finds a healthy collection of fish and animals. If not eaten, phytoplankton die and sink, carrying their carbon with them. Worldwide, ocean phytoplankton consume as much carbon dioxide as the Earth's forests and land plants combined.
"Being able to readily detect and track blooms of these small-celled phytoplankton is critical for understanding their impact in the oceans and global carbon cycle," Ribalet says.
SeaFlow, a device being developed at the UW, is making that task easier, he says. The instrument is a flow cytometer that measures the size and pigment composition of each single phytoplankton present in a sample at a rate of thousands of cells per second.
Typically biologists with traditional cytometers looked for phytoplankton using tablespoon-sized samples of water collected 10 to 50 miles or more from each other.
SeaFlow can sample seawater continuously making it possible to analyze samples every three minutes or two samples per mile traveled, says Jarred Swalwell, a research engineer with oceanography and lead developer. That's because the instrument taps into the system found on board most oceanographic research vessels that supplies running seawater to shipboard labs for such things as keeping specimens alive.
In this way SeaFlow collects more samples in a day than most scientists gather on an entire cruise, Swalwell says. And SeaFlow sensors and banks of computers, not scientists with traditional cytometers and microscopes, sort the characteristics of phytoplankton communities to determine what's present.
SeaFlow takes five minutes to do what used to take him two months, Ribalet says.
A prototype of the device revealed the biological hotspot off Vancouver Island and, for the first time, a marine ecotone, something oceanographers knew must exist but had no way to locate before now.
Ecotones are where different habitats overlap, where a prairie and forest meet, for example, or a river and estuary intersect. Ectones are rich with species because plants and animals from both ecosystems might be found there, as well as those adapted specifically to this hybrid environment. The ecotone discovered by Ribalet and colleagues is a 40-mile-wide region where ocean water rich with nitrates met coastal water rich with iron and where not just one, but five oceanic phytoplankton communities were detected taking full advantage of the carbon and nutrients concentrated there.
"This was just unexpected diversity," Ribalet says. "It flies in the face of the textbooks."
Ribalet and Swalwell imagine additional marine ecotones and biological hot spots could be detected if SeaFlows were installed on various ships and set up in a way to automatically alert scientists when phytoplankton abundance takes an interesting turn. Just such a SeaFlow set up has already been permanently mounted on the UW's vessel, the Thomas G. Thompson.
INFORMATION:
Other co-authors on the paper from the UW are professor of oceanography Virginia Armbrust, research scientist Adrian Marchetti, doctoral research assistants Katherine Hubbard and Colleen Durkin, and research engineer Rhonda Morales; Kristina Brown and Philippe Tortell from University of British Columbia; and Marie Robert from Fisheries and Oceans Canada. The work was funded by the Gordon and Betty Moore Foundation, National Science Foundation, National Institutes of Environmental Health and Sciences and the National Oceanic and Atmospheric Administration.
For more information:
Ribalet, 206-221-7258, ribalet@uw.edu
Website: http://armbrustlab.ocean.washington.edu/people/ribalet
Swalwell, 206-221-7258, jarred@uw.edu
Website: http://armbrustlab.ocean.washington.edu/node/226
SeaFlow homepage: http://seaflow.ocean.washington.edu/
YouTube: Census for the very small
http://armbrustlab.ocean.washington.edu/node/245
The colors red, orange and yellow indicate marine areas with abundant microscopic algae, some of which would have gone undiscovered using typical discrete sampling methods. The biological hotspot depicted in the North Pacific in this video, for instance, was between places the ship stopped to sample. It was revealed only because of new UW technology able to continuously sample and quickly analyze seawater while a ship is underway.
Video credit: Francois Ribalet
UW-built device reveals invisible world teeming with microscopic algae
2010-10-07
ELSE PRESS RELEASES FROM THIS DATE:
Research suggests volcanoes nixed Neanderthals
2010-10-07
New research suggests that climate change following massive volcanic eruptions drove Neanderthals to extinction and cleared the way for modern humans to thrive in Europe and Asia.
The research, led by Liubov Vitaliena Golovanova and Vladimir Borisovich Doronichev of the ANO Laboratory of Prehistory in St. Petersburg, Russia, is reported in the October issue of Current Anthropology.
"[W]e offer the hypothesis that the Neanderthal demise occurred abruptly (on a geological time-scale) … after the most powerful volcanic activity in western Eurasia during the period of ...
Volcano fuels massive phytoplankton bloom
2010-10-07
Advocates for seeding regions of the ocean with iron to combat global warming should be interested in a new study published today in Geophysical Research Letters. A Canada-US team led by University of Victoria oceanographer Dr. Roberta Hamme describes how the 2008 eruption of the Kasatochi volcano in the Aleutian Islands spewed iron-laden ash over a large swath of the North Pacific. The result, says Hamme, was an "ocean productivity event of unprecedented magnitude"—the largest phytoplankton bloom detected in the region since ocean surface measurements by satellite began ...
Planet Neptune not guilty of harassment
2010-10-07
New research by a University of Victoria PhD student is challenging popular theory about how part of our solar system formed. At today's meeting of the prestigious Division of Planetary Sciences in Pasadena, California, Alex Parker is presenting evidence that, contrary to popular belief, the planet Neptune can't have knocked a collection of planetoids known as the Cold Classical Kuiper Belt to its current location at the edge of the solar system.
Parker and his thesis supervisor Dr. J.J. Kavelaars (Herzberg Institute of Astrophysics) studied binaries—systems of two objects ...
Number of synapses shown to vary between night and day in Stanford study of zebrafish
2010-10-07
STANFORD, Calif. — With the help of tiny, see-through fish, Stanford University School of Medicine researchers are homing in on what happens in the brain while you sleep. In a new study, they show how the circadian clock and sleep affect the scope of neuron-to-neuron connections in a particular region of the brain, and they identified a gene that appears to regulate the number of these connections, called synapses.
"This is the first time differences in the number of synapses between day and night and between wake and sleep have been shown in a living animal," said Lior ...
Competing motivational brain responses predict costly helping
2010-10-07
A new study reveals that brain signals elicited by the sight of someone suffering pain differ as a function of whether we identify positively or negatively with that person and that these differential brain signals predict a later decision to help or withdraw from helping. The research, published by Cell Press in the October 7th issue of the journal Neuron, provides fascinating insight into the neural mechanisms involved in decisions that benefit others, known as prosocial behavior, and how they are modulated by perceived group membership.
Dr. Tania Singer from the University ...
Immune system linked with accumulation of toxic tau protein
2010-10-07
Cells that help to protect the central nervous system may also contribute to pathological changes in the brain. New research, published by Cell Press in the October 7th issue of the journal Neuron, provides mechanistic insight into a link between the immune system and neurodegenerative disorders like Alzheimer's disease that are associated with abnormal accumulation of tau protein.
Tau is a protein found inside of neurons that acts almost like a skeleton, providing a supportive framework for the cell. However, abnormal tau sometimes clumps into filamentous deposits that ...
In Parkinson's disease, brain cells abandon mitochondria
2010-10-07
In a study that sheds new light on the causes of Parkinson's disease, researchers report that brain cells in Parkinson's patients abandon their energy-producing machinery, the mitochondria. A shutdown in fuel can have devastating effects on brain cells, which consume roughly 20 percent of the body's energy despite making up only 2 percent of body weight.
The findings indicate that boosting the mitochondria with FDA approved drugs early on may prevent or delay the onset of Parkinson's. The study will be published in the one-year anniversary issue of the journal Science ...
GUMC researchers find the blind use visual brain area to improve other senses
2010-10-07
Washington, DC – People who have been blind from birth make use of the visual parts of their brain to refine their sensation of sound and touch, according to an international team of researchers led by neuroscientists at Georgetown University Medical Center (GUMC).
Published today in the journal Neuron, the scientists say this finding helps explain why the blind have such advanced perception of these senses – abilities that far exceed people who can see, they say.
Using functional magnetic resonance imaging (fMRI), the researchers found that the blind use specialized ...
Reproductive health: Checkerboard of infertility treatment in Europe
2010-10-07
Bad Hofgastein, 6 October 2010 -- European patients are in many countries, in fact, limited in their individual choice of medically assisted reproduction (MAR) treatment, experts from the European Society of Human Reproduction and Embryology (ESHRE) stressed today at the European Health Forum Gastein (EHFG).
The EHFG is the most important conference on health care policy in the EU. This year it has attracted about 600 decision-makers from more than 40 countries in the fields of health care policy, research, science, and business as well as from patients' organizations. ...
Greatest warming is in the north, but biggest impact on life is in the tropics
2010-10-07
In recent decades documented biological changes in the far Northern Hemisphere have been attributed to global warming, changes from species extinctions to shifting geographic ranges. Such changes were expected because warming has been fastest in the northern temperate zone and the Arctic.
But new research published in the Oct. 7 edition of Nature adds to growing evidence that, even though the temperature increase has been smaller in the tropics, the impact of warming on life could be much greater there than in colder climates.
The study focused on ectothermic, or ...