(Press-News.org) LA JOLLA, CA---- Salk scientists have identified a unique molecular signature in induced pluripotent stem cells (iPSCs), "reprogrammed" cells that show great promise in regenerative medicine thanks to their ability to generate a range of body tissues.
In this week's Proceedings of the National Academy of Sciences, the Salk scientists and their collaborators at University of California, San Diego, report that there is a consistent, signature difference between embryonic and induced pluripotent stem cells. The findings could help overcome hurdles to using the induced stem cells in regenerative medicine.
"We believe that iPSCs hold a great potential for the treatment of human patients," says Juan Carlos Izpisua Belmonte, a professor in Salk's Gene Expression Laboratory and the senior author on the paper. "Yet we must thoroughly understand the molecular mechanisms governing their safety profile in order to be confident of their function in the human body. With the discovery of these small, yet apparent, epigenetic differences, we believe that we are now one step closer to that goal."
Embryonic stem cells (ESCs) are known for their "pluripotency," the ability to differentiate into nearly any cell in the body. Because of this ability, it has long been thought that ESCs would be ideal to customize for therapeutic uses. However, when ESCs mature into specific cell types, and are then transplanted into a patient, they may elicit immune responses, potentially causing the patient to reject the cells.
In 2006, scientists discovered how to revert mature cells, which had already differentiated into particular cell types, such as skin cells or hair cells, back into a pluripotent state. These "induced pluripotent stem cells" (iPSCs), which could be developed from the patient's own cells, would theoretically carry no risk of immune rejection.
However, scientists found that iPSCs had molecular differences from embryonic stem cells. Specifically, there were epigenetic changes, chemical modifications in DNA that might alter genetic activity. At certain points in the iPSC's genome, scientists could see the presence of different patterns of methyl groups when compared to the genomes of ESCs. It seemed these changes occurred randomly.
Izpisua Belmonte and his colleagues wanted to understand more about these differences. Were they truly random, or was there a discernable pattern?
Unlike previous studies, which had primarily analyzed iPSCs derived from only one mature type of cells (mainly connective tissue cells called fibroblasts), the Salk and UCSD researchers examined iPSCs derived from six different mature cell types to see if there were any commonalities. They discovered that while there were hundreds of unpredictable changes, there were some that remained consistent across the cell types: the same nine genes were associated with these common changes in all iPSCs.
"We knew there were differences between iPSCs and ESCs," says Sergio Ruiz, first author of the paper, "We now have an identifying mark for what they are."
The therapeutic significance of these nine genes awaits further research. The importance of the current study is that it gives stem cells researchers a new and more precise understanding of iPSCs.
INFORMATION:
Other researches on the study were: Dinh Diep (co-first author), Athurva Gore, Athanasia D. Panopoulos, Nuria Montserrat, Nongluk Plongthongkum, Sachin Kumar, Ho-Lim Fung, Alessandra Giorgetti, Josipa Bilic, Erika M. Batchelder, Holm Zaehres, Natalia G. Kan, Hans R. Schöler, Mark Mercola and Kun Zhang.
The work was supported by grants from the Instituto de Salud Carlos III, the Focht-Powell Fellowship, Fundacion Cellex, MINECO, Sanofi, the G. Harold and Leila Y. Mathers Charitable Foundation, The Leona M. and Harry B. Helmsley Charitable Trust, CIRM and NIH.
About the Salk Institute for Biological Studies:
The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.
Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.
Discovery of reprogramming signature may help further stem cell-based regenerative medicine research
Salk scientists show nine genes at heart of epigenetic changes in induced pluripotent stem cells
2012-09-19
ELSE PRESS RELEASES FROM THIS DATE:
Sandia shows monitoring brain activity during study can help predict test performance
2012-09-19
ALBUQUERQUE, N.M. — Research at Sandia National Laboratories has shown that it's possible to predict how well people will remember information by monitoring their brain activity while they study.
A team under Laura Matzen of Sandia's cognitive systems group was the first to demonstrate predictions based on the results of monitoring test volunteers with electroencephalography (EEG) sensors.
For example, "if you had someone learning new material and you were recording the EEG, you might be able to tell them, 'You're going to forget this, you should study this again,' ...
Major changes needed to protect Australia's species and ecosystems
2012-09-19
A study has highlighted the sensitivity of Australia's species and ecosystems to climate change, and the need for new ways of thinking about biodiversity conservation.
'Climate change is likely to start to transform some of Australia's natural landscapes by 2030,' lead researcher, CSIRO's Dr Michael Dunlop said.
'By 2070, the ecological impacts are likely to be very significant and widespread. Many of the environments our plants and animals currently exist in will disappear from the continent. Our grandchildren are likely to experience landscapes that are very different ...
NYU neuroscientists find promise in addressing Fragile X afflictions
2012-09-19
Neuroscientists at New York University have devised a method that has reduced several afflictions associated with Fragile X syndrome (FXS) in laboratory mice. Their findings, which are reported in the journal Neuron, offer new possibilities for addressing FXS, the leading inherited cause of autism and intellectual disability.
Those afflicted with FXS do not possess the protein FMRP, which is a suppressor of protein synthesis. Absent this suppressor, protein synthesis is exaggerated, producing a range of mental and physical disorders.
Previous research has indirectly ...
Scientists show biological mechanism can trigger epileptic seizures
2012-09-19
CINCINNATI – Scientists have discovered the first direct evidence that a biological mechanism long suspected in epilepsy is capable of triggering the brain seizures – opening the door for studies to seek improved treatments or even preventative therapies.
Researchers at Cincinnati Children's Hospital Medical Center report Sept. 19 in Neuron that molecular disruptions in small neurons called granule cells – located in the dentate gyrus region of the brain – caused brain seizures in mice similar to those seen in human temporal lobe epilepsy.
The dentate gyrus is in the ...
Autism symptoms could arise from unreliable neural responses
2012-09-19
Diverse symptoms associated with autism could be explained by unreliable activity of neurons in the brain in response to basic, nonsocial sensory information, according to a study published by Cell Press on September 19th in the journal Neuron. The new findings suggest that autism is a disorder of general neural processing and could potentially provide an explanation for the origins of a range of psychiatric and neurological disorders.
"Within the autism research community, most researchers are looking for either a dysfunctional brain region or inadequate connections ...
Autistic adults have unreliable neural responses, Carnegie Mellon-led research team finds
2012-09-19
VIDEO:
New research led by Carnegie Mellon University neuroscientists takes the first step towards deciphering the connection between general brain function and the emergent behavioral patterns in autism. Published in...
Click here for more information.
PITTSBURGH— Autism is a disorder well known for its complex changes in behavior — including repeating actions over and over and having difficulty with social interactions and language. Current approaches to understanding ...
Neuroscientists investigate lotteries to study how the brain evaluates risk
2012-09-19
People are faced with thousands of choices every day, some inane and some risky. Scientists know that the areas of the brain that evaluate risk are the same for each person, but what makes the value assigned to risk different for individuals? To answer this question, a new video article in Journal of Visualized Experiments (JoVE) uses functional magnetic resonance imaging (fMRI) to characterize subjective risk assessment while subjects choose between different lotteries to play. The article, a joint effort from laboratories at Yale School of Medicine and New York University, ...
Nearly half of kidney recipients in live donor transplant chains are minorities
2012-09-19
The largest U.S. multicenter study of living kidney transplant donor chains showed that 46 percent of recipients are minorities, a finding that allays previous fears that these groups would be disadvantaged by expansion of the donor pool through this type of exchange process.
The study of a series of chain transplantations performed from February 2008 to June 2011 at 57 centers nationwide included 272 kidney transplants that paired organ donors who were incompatible with their relatives with strangers providing organs for altruistic reasons or with others donating an ...
Warming ocean could start big shift of Antarctic ice
2012-09-19
Fast-flowing and narrow glaciers have the potential to trigger massive changes in the Antarctic ice sheet and contribute to rapid ice-sheet decay and sea-level rise, a new study has found.
Research results published in the journal Proceedings of the National Academy of Sciences reveal in more detail than ever before how warming waters in the Southern Ocean are connected intimately with the movement of massive ice-sheets deep in the Antarctic interior.
"It has long been known that narrow glaciers on the edge of the Antarctica act as discrete arteries termed ice streams, ...
Did a 'forgotten' meteor have a deadly, icy double-punch?
2012-09-19
When a huge meteor collided with Earth about 2.5 million years ago and fell into the southern Pacific Ocean it not only could have generated a massive tsunami but also may have plunged the world into the Ice Ages, a new study suggests.
A team of Australian researchers says that because the Eltanin meteor – which was up to two kilometres across - crashed into deep water, most scientists have not adequately considered either its potential for immediate catastrophic impacts on coastlines around the Pacific rim or its capacity to destabilise the entire planet's climate system.
"This ...
LAST 30 PRESS RELEASES:
The impact of family dynamics on eating behaviour – how going home for Christmas can change how you eat
Tracing the quick synthesis of an industrially important catalyst
New software sheds light on cancer’s hidden genetic networks
UT Health San Antonio awarded $3 million in CPRIT grants to bolster cancer research and prevention efforts in South Texas
Third symposium spotlights global challenge of new contaminants in China’s fight against pollution
From straw to soil harmony: International team reveals how biochar supercharges carbon-smart farming
Myeloma: How AI is redrawing the map of cancer care
Manhattan E. Charurat, Ph.D., MHS invested as the Homer and Martha Gudelsky Distinguished Professor in Medicine at the University of Maryland School of Medicine
Insilico Medicine’s Pharma.AI Q4 Winter Launch Recap: Revolutionizing drug discovery with cutting-edge AI innovations, accelerating the path to pharmaceutical superintelligence
Nanoplastics have diet-dependent impacts on digestive system health
Brain neuron death occurs throughout life and increases with age, a natural human protein drug may halt neuron death in Alzheimer’s disease
SPIE and CLP announce the recipients of the 2025 Advanced Photonics Young Innovator Award
Lessons from the Caldor Fire’s Christmas Valley ‘Miracle’
Ant societies rose by trading individual protection for collective power
Research reveals how ancient viral DNA shapes early embryonic development
A molecular gatekeeper that controls protein synthesis
New ‘cloaking device’ concept to shield sensitive tech from magnetic fields
Researchers show impact of mountain building and climate change on alpine biodiversity
Study models the transition from Neanderthals to modern humans in Europe
University of Phoenix College of Doctoral Studies releases white paper on AI-driven skilling to reduce burnout and restore worker autonomy
AIs fail at the game of visual “telephone”
The levers for a sustainable food system
Potential changes in US homelessness by ending federal support for housing first programs
Vulnerability of large language models to prompt injection when providing medical advice
Researchers develop new system for high-energy-density, long-life, multi-electron transfer bromine-based flow batteries
Ending federal support for housing first programs could increase U.S. homelessness by 5% in one year, new JAMA study finds
New research uncovers molecular ‘safety switch’ shielding cancers from immune attack
Bacteria resisting viral infection can still sink carbon to ocean floor
Younger biological age may increase depression risk in older women during COVID-19
Bharat Innovates 2026 National Basecamp Showcases India’s Most Promising Deep-Tech Ventures
[Press-News.org] Discovery of reprogramming signature may help further stem cell-based regenerative medicine researchSalk scientists show nine genes at heart of epigenetic changes in induced pluripotent stem cells




