(Press-News.org) Cold Spring Harbor, NY – Researchers at Cold Spring Harbor Laboratory (CSHL) have solved an important piece of one of neuroscience's outstanding puzzles: how progenitor cells in the developing mammalian brain reproduce themselves while also giving birth to neurons that will populate the emerging cerebral cortex, the seat of cognition and executive function in the mature brain.
CSHL Professor Linda Van Aelst, Ph.D., and colleagues set out to solve a particular mystery concerning radial glial cells, or RGCs, which are progenitors of pyramidal neurons, the most common type of excitatory nerve cell in the mature mammalian cortex.
In genetically manipulated mice, Van Aelst's team demonstrated that a protein called DOCK7 plays a central regulatory role in the process that determines how and when an RGC "decides" either to proliferate, i.e., make more progenitor cells like itself, or give rise to cells that will mature, or "differentiate," into pyramidal neurons. The findings are reported in the September 2012 issue of Nature Neuroscience.
DOCK7 was already known to be highly expressed in various parts of the developing rodent brain, including the hippocampus and cortex. It had been shown by Van Aelst and colleagues to control the formation of axons – wiring that connects neurons.
Balancing proliferation and differentiation
In their newly published research, Van Aelst, along with Drs. Yu-Ting Yang and Chia-Lin Wang, a graduate student and postdoctoral fellow, respectively, in the Van Aelst lab, elucidate DOCK7's regulatory role in experiments in which the protein was alternately silenced and overexpressed.
When the protein was silenced in mouse embryos, neuronal differentiation was impeded; RGCs remained in their progenitor state. When DOCK7 was overexpressed, RGCs differentiated prematurely, resulting in more neurons and fewer RGCs.
These and related experiments revealed the mechanism through which DOCK7 expression affects the two essential but contrasting functions of RGCs. "Self-renewability of RGCs must be tightly balanced with differentiation for proper cortical development," says Van Aelst.
"The mechanism we discovered to be central in the determination of RGC fate, is called interkinetic nuclear migration, or INM," she continues, "and you can see it in action in the movies made by Drs. Wang and Yang."
In INM, an RGC cell nucleus visibly travels over the course of the cell cycle "upward" and "downward" between opposing sides of the apical-most region of the neuroepithelium, called the ventricular zone or VZ. Nuclei move away from the apical surface during the G1 phase, undergo S phase at a basal location in the VZ, and return to the apical surface during G2 to divide at the apical location.
It is DOCK7 that regulates this movement; in particular, the movement from the basal to apical location, the CSHL team has now demonstrated. On what appears to be the lower surface of the VZ, the apical surface, signals directing the RCG toward proliferation – i.e., reproduction of other RGCs – are dominant. On the upper or 'basal' side of the VZ, dominant signals coax the RGC to split into new intermediate progenitors or neurons.
Migration explained: DOCK7, TACC3 and centrosomes
"The cellular machinery that controls INM involves a protein complex of actin and myosin, called actomyosin, as well as microtubule-dependent systems," notes Dr. Wang. "We show how DOCK7 exerts its effects by antagonizing the microtubule growth-promoting function of a protein called TACC3." That protein, tellingly, is associated with the centrosome, the cellular organ that organizes microtubules, and regulates the growth of microtubules emanating from the centrosome, thereby coupling the centrosome and nucleus .
As Dr. Yang points out, DOCK7 acts by antagonizing the microtubule growth-promoting function of TACC3. Silencing of DOCK7 accelerates the movement of RGC nuclei from the basal to apical side of the VZ, resulting in extended apical residency of RGC nuclei and apical mitoses that lead to an increase in RGCs and a reduction in neurons. DOCK7 overexpression, on the other hand, leads to extended residence of RGC nuclei at basal locations and mitoses away from the apical surface, where the production of new neurons increases, at the expense of the proliferation of more progenitors.
Beyond elucidating an important mechanism of cortical development, the new research may shed light on pathologies seen in microcephaly, a condition marked by an abnormally small brain size, as well as neurodevelopmental disorders such as schizophrenia. "If DOCK7 expression is abnormal, you perturb normal neurogenesis," says Van Aelst. "In future work we hope to explore whether an imbalance in neurogenesis caused by DOCK7 aberrations is associated with a subsequent imbalance in cortical circuitry, and various known pathologies."
This work was supported by U.S. National Institutes of Health grant MH082808 and a New York STARR consortium grant. Other support came from U.S. National Institutes of Health research training grant T32 CA 148056-1.
###
"DOCK7 interacts with TACC3 to regulate interkinetic nuclear migration and cortical neurogenesis" appears in the September 2012 issue of Nature Neuroscience. The authors are: Yu-Ting Yang, Chia-Lin Wang and Linda Van Aelst. The paper can be obtained online at: http://www.nature.com/neuro/journal/v15/n9/full/nn.3171.html
About Cold Spring Harbor Laboratory
Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 360 scientists strong and its Meetings & Courses program hosts more than 12,500 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit www.cshl.edu.
Research identifies protein that regulates key 'fate' decision in cortical progenitor cells
DOCK7 expression determines if radial glial cells will proliferate or differentiate
2012-09-21
ELSE PRESS RELEASES FROM THIS DATE:
Growing corn to treat rare disease
2012-09-21
The seeds of greenhouse-grown corn could hold the key to treating a rare, life-threatening childhood genetic disease, according to researchers from Simon Fraser University.
SFU biologist Allison Kermode and her team have been carrying out multidisciplinary research toward developing enzyme therapeutics for lysosomal storage diseases - rare, but devastating childhood genetic diseases – for more than a decade.
In the most severe forms of these inherited diseases, untreated patients die in early childhood because of progressive damage to all organs of the body.
Currently, ...
LifeShield Builds Web Presence for Regional Authorized Dealers
2012-09-21
LifeShield Security authorized dealers throughout the country can now connect with consumers on a regional level through locally relevant websites that help to identify customers and prospects. Sites also offer special wireless home security deals to each region that are constantly changing.
"Local dealers understand the security challenges particular to their own regions and therefore can be more successful at recruiting new customers," said Shannon Dominello, CMO, LifeShield. "Regional sites provide a legitimate local web presence for each dealer that ...
Fear can be erased from the brain
2012-09-21
Newly formed emotional memories can be erased from the human brain. This is shown by researchers from Uppsala University in a new study now being published by the academic journal Science. The findings may represent a breakthrough in research on memory and fear.
Thomas Ågren, a doctoral candidate at the Department of Psychology under the supervision of Professors Mats Fredrikson and Tomas Furmark, has shown, that it is possible to erase newly formed emotional memories from the human brain.
When a person learns something, a lasting long-term memory is created with the ...
Move to less impoverished neighborhoods boosts physical and mental health
2012-09-21
Moving from a high-poverty to lower-poverty neighborhood spurs long-term gains in the physical and mental health of low-income adults, as well as a substantial increase in their happiness, despite not improving economic self-sufficiency, according to a new study published in the Sept. 20 issue of Science by researchers at the University of Chicago and partners at other institutions.
Although moving into less disadvantaged neighborhoods did not raise incomes for the families that moved, these families experienced important gains in well-being in other ways. Moving from ...
A mother’s nutrition--before pregnancy--may alter the function of her children’s genes
2012-09-21
Bethesda, MD—Everyone knows that what mom eats when pregnant makes a huge difference in the health of her child. Now, new research in mice suggests that what she ate before pregnancy might be important too. According to a new research report published online in The FASEB Journal, what a group of female mice ate—before pregnancy—chemically altered their DNA and these changes were passed to her offspring. These DNA alterations, called "epigenetic" changes, drastically affected the pups' metabolism of many essential fatty acids. These results could have a profound impact on ...
Treating disease by the numbers
2012-09-21
Mathematical modeling being tested by researchers at the School of Science at Indiana University-Purdue University Indianapolis (IUPUI) and the IU School of Medicine has the potential to impact the knowledge and treatment of several diseases that continue to challenge scientists across the world.
The National Science Foundation recently recognized the work led by Drs. Giovanna Guidoboni, associate professor of mathematics in the School of Science, and Alon Harris, professor of ophthalmology and director of clinical research at the Eugene and Marilyn Glick Eye Institute, ...
ORNL research uncovers path to defect-free thin films
2012-09-21
A team led by Oak Ridge National Laboratory's Ho Nyung Lee has discovered a strain relaxation phenomenon in cobaltites that has eluded researchers for decades and may lead to advances in fuel cells, magnetic sensors and a host of energy-related materials.
The finding, published in Nano Letters, could change the conventional wisdom that accommodating the strain inherent during the formation of epitaxial thin films necessarily involves structural defects, said Lee, a member of the Department of Energy lab's Materials Science and Technology Division. Instead, the researchers ...
Once usability becomes secure
2012-09-21
Risk increases with comfort: "Single Sign-On" permits users to access all their protected Web resources, replacing repeated sign-ins with passwords. However, attackers also know about the advantages such a single point of attack offers to them. Andreas Mayer, who is writing his PhD thesis as an external doctoral candidate at the Chair for Network and Data Security (Prof. Dr. Jörg Schwenk) at Ruhr-Universität Bochum, has now been able to significantly increase the security of this central interface for the simpleSAMLphp framework.
In the past, no protection against targeted ...
As painkiller overdoses mount, researchers outline effective approaches to curb epidemic
2012-09-21
WASHINGTON—Prescription painkillers are responsible for more fatal overdoses in the United States than heroin and cocaine combined. And while most states have programs to curb abuse and addiction, a new report from Brandeis University shows that many states do not fully analyze the data they collect.
Experts from the Prescription Drug Monitoring Program Center of Excellence at Brandeis University's Heller School for Social Policy and Management systematically assessed prescription drug monitoring programs and found a patchwork of strategies and standards. Their report ...
Walking to the beat could help patients with Parkinson's disease
2012-09-21
Walking to a beat could be useful for patients needing rehabilitation, according to a University of Pittsburgh study. The findings, highlighted in the August issue of PLOS One, demonstrate that researchers should further investigate the potential of auditory, visual, and tactile cues in the rehabilitation of patients suffering from illnesses like Parkinson's Disease—a brain disorder leading to shaking (tremors) and difficulty walking.
Together with a team of collaborators from abroad, Ervin Sejdic, an assistant professor of engineering in Pitt's Swanson School of Engineering, ...
LAST 30 PRESS RELEASES:
Early diagnosis of bladder cancer, now conveniently at home
People who are autistic and transgender/gender diverse have poorer health and health care
Gene classifier tests for prostate cancer may influence treatment decisions despite lack of evidence for long-term outcomes
KERI, overcomes the biggest challenge of the lithium–sulfur battery, the core of UAM
In chimpanzees, peeing is contagious
Scientists uncover structure of critical component in deadly Nipah virus
Study identifies benefits, risks linked to popular weight-loss drugs
Ancient viral DNA shapes early embryo development
New study paves way for immunotherapies tailored for childhood cancers
Association of waist circumference with all-cause and cardiovascular mortalities in diabetes from the National Health and Nutrition Examination Survey 2003–2018
A new chapter in Roman administration: Insights from a late Roman inscription
Global trust in science remains strong
New global research reveals strong public trust in science
Inflammation may explain stomach problems in psoriasis sufferers
Guidance on animal-borne infections in the Canadian Arctic
Fatty muscles raise the risk of serious heart disease regardless of overall body weight
HKU ecologists uncover significant ecological impact of hybrid grouper release through religious practices
New register opens to crown Champion Trees across the U.S.
A unified approach to health data exchange
New superconductor with hallmark of unconventional superconductivity discovered
Global HIV study finds that cardiovascular risk models underestimate for key populations
New study offers insights into how populations conform or go against the crowd
Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials
WashU researchers map individual brain dynamics
Technology for oxidizing atmospheric methane won’t help the climate
US Department of Energy announces Early Career Research Program for FY 2025
PECASE winners: 3 UVA engineering professors receive presidential early career awards
‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions
MSU researcher’s breakthrough model sheds light on solar storms and space weather
Nebraska psychology professor recognized with Presidential Early Career Award
[Press-News.org] Research identifies protein that regulates key 'fate' decision in cortical progenitor cellsDOCK7 expression determines if radial glial cells will proliferate or differentiate