(Press-News.org) CINCINNATI – Researchers have discovered a previously unknown function for a protein that could add to the expanding arsenal of potential new drugs for battling inflammation and tissue fibrosis in a number of disease processes.
Scientists from Cincinnati Children's Hospital Medical Center report Sept. 27 in Developmental Cell that, a protein called TRPC6 mediates a molecular pathway critical to the body's repair processes following various forms of injury caused by disease.
After injury – such as that caused by a heart attack – the TRPC6-controlled pathway prompts cells called fibroblasts to change into myofibroblasts, according to the study.
Myofibroblasts secrete a substance called extracellular matrix, an important building block needed for wound healing and tissue remodeling, which includes inflammation and scarring.
"Our study suggests that a TRPC inhibitor could be a good anti-fibrotic or anti-inflammatory agent in heart failure, muscular dystrophy, pulmonary disorders and other diseases where tissue fibrosis becomes a problem," said Jeffery Molkentin, PhD, principal investigator and a scientist at the Cincinnati Children's Heart Institute and Howard Hughes Medical Institute. "As well, activation of the TRPC pathway with an agonist compound could be used in select situations to enhance wound healing."
Although the body needs a certain amount of inflammation and scarring to heal and return to normal function, in chronic diseases the process can get stuck in the "on" mode. This can lead to fibrosis (the buildup of excess connective tissues) and cause serious medical complications. Effectively and safely controlling complex inflammation processes in these situations remains an unmet clinical need, and is also the impetus behind a concerted effort in biomedical research to find new therapeutic options.
Researchers on the current study were encouraged by how effectively the TRPC6 pathway (TRPC6-calcineurin-NFAT) appeared to influence the transformation of fibroblasts into myofibroblasts, the secretion of extracellular matrix, wound healing and fibrosis. The authors wrote that identification of this cell repair signaling mechanism "offers an additional avenue for developing targeted intervention points in fibrotic diseases."
Calcineurin is a calcium-dependent enzyme involved in the immune system, the regulation of T-cells and also important in the function of heart cells. NFAT (nuclear factor of activated T-cells) is a family of proteins important to the immune system and the development of different tissues in the body.
Including first author Jennifer Davis, PhD. – a member of Molkentin's laboratory – the researchers started their study by running a genomic screen of molecules that regulate the transformation of fibroblast cells into myofibroblasts. The screen and subsequent laboratory tests identified TRPC6 as a promising candidate. Prior to the current study, TRPC6 had not been associated with fibrosis, although it has been linked to other cellular functions in kidneys, skin cells and hippocampal neurons of the brain.
The scientists used a virus expressing TRPC6 to infect cell cultures of mouse embryonic fibroblasts, rat cardiac fibroblasts and human dermal fibroblasts. TRPC6-infected fibroblasts fully activated the transformation to myofibroblasts, while fibroblasts lacking TRPC6 were resistant to transformation. In TRPC-6 gene deleted mice, the animals showed impaired dermal and cardiac wound healing after injury.
Molkentin said there are TRPC inhibitors in the early stage drug development pipeline, although their initial design has not targeted heart disease, inflammation or fibrosis. He added the current study may provide an impetus for widening the development focus to include these medical needs.
###Also collaborating were researchers from the Laboratory of Neurology at the National Institute of Environmental Health Sciences/National Institutes of Health (NIH) and the Department of Pediatrics and the University of Cincinnati College of Medicine.
Funding support for the research came from the NIH (P01-NS072027, P01-HL080101, 5F32HL095353-03) and the Howard Hughes Medical Institute.
About Cincinnati Children's:
Cincinnati Children's Hospital Medical Center ranks third in the nation among all Honor Roll hospitals in U.S. News and World Report's 2012 Best Children's Hospitals ranking. It is ranked #1 for neonatology and in the top 10 for all pediatric specialties. Cincinnati Children's is one of the top two recipients of pediatric research grants from the National Institutes of Health. It is internationally recognized for improving child health and transforming delivery of care through fully integrated, globally recognized research, education and innovation. Additional information can be found at www.cincinnatichildrens.org.
Washington, DC (September 24, 2012) – Children ages 2-11 view an alarming amount of television shows that contain forms of social bullying or social aggression. Physical aggression in television for children is greatly documented, but this is the first in-depth analysis on children's exposure to behaviors like cruel gossiping and manipulation of friendship.
Nicole Martins, Indiana University, and Barbara J. Wilson, University of Illinois, Urbana-Champaign, published in the Journal of Communication a content analysis of the 50 most popular children's shows according to ...
Atherosclerosis – the hardening of arteries that is a primary cause of cardiovascular disease and death – has long been presumed to be the fateful consequence of complicated interactions between overabundant cholesterol and resulting inflammation in the heart and blood vessels.
However, researchers at the University of California, San Diego School of Medicine, with colleagues at institutions across the country, say the relationship is not exactly what it appears, and that a precursor to cholesterol actually suppresses inflammatory response genes. This precursor molecule ...
ROCHESTER, Minn. -- Mayo Clinic researchers have found a way to detect and eliminate potentially troublemaking stem cells to make stem cell therapy safer. Induced Pluripotent Stem cells, also known as iPS cells, are bioengineered from adult tissues to have properties of embryonic stem cells, which have the unlimited capacity to differentiate and grow into any desired types of cells, such as skin, brain, lung and heart cells. However, during the differentiation process, some residual pluripotent or embryonic-like cells may remain and cause them to grow into tumors.
"Pluripotent ...
BOSTON--Flipping a newly discovered molecular switch in white fat cells enabled mice to eat a high-calorie diet without becoming obese or developing the inflammation that causes insulin resistance, report scientists from Dana-Farber Cancer Institute.
The researchers say the results, to be published in the Sept. 28 issue of the journal Cell, provide the first known molecular link between thermogenesis (burning calories to produce heat) and the development of inflammation in fat cells.
These two processes had been previously thought to be controlled separately. Thermogenesis ...
AUDIO:
An authoritative, evidence-based assessment of the state of science and technology in Canada has found that Canadian science and technology is healthy, growing and internationally respected. Over the past five...
Click here for more information.
Ottawa (September 27th, 2012) - An authoritative, evidence-based assessment of the state of science and technology in Canada has found that Canadian science and technology is healthy, growing and internationally respected. Over ...
Researchers of motor neuron diseases have long had a hunch that two fatal diseases, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), might somehow be linked. A new study confirms that this link exists.
"Our study is the first to link the two diseases on a molecular level in human cells," said Robin Reed, Harvard Medical School professor of cell biology and lead investigator of the study.
The results will be published online in the September 27 issue of Cell Reports.
ALS, or Lou Gehrig's disease, which has an adult onset, affects neurons that ...
Scientists may have discovered why a protein called MYC can provoke a variety of cancers. Like many proteins associated with cancer, MYC helps regulate cell growth. A study carried out by researchers at the National Institutes of Health and colleagues found that, unlike many other cell growth regulators, MYC does not turn genes on or off, but instead boosts the expression of genes that are already turned on.
These findings, which will be published in Cell on Sept. 28, could lead to new therapeutic strategies for some cancers.
"We carried out a highly sophisticated ...
Researchers have discovered in fruit flies a key metabolic hormone thought to be the exclusive property of vertebrates. The hormone, leptin, is a nutrient sensor, regulating energy intake and output and ultimately controlling appetite. As such, it is of keen interest to researchers investigating obesity and diabetes on the molecular level. But until now, complex mammals such as mice have been the only models for investigating the mechanisms of this critical hormone. These new findings suggest that fruit flies can provide significant insights into the molecular underpinnings ...
CAMBRIDGE, Mass. (September 27, 2012) – For a cancer patient, over-expression of the MYC oncogene is a bad omen.
Scientists have long known that in tumor cells, elevated levels of MYC's protein product, c-Myc, are associated with poor clinical outcomes, including increased rates of metastasis, recurrence, and mortality. Yet decades of research producing thousands of scientific papers on the subject have failed to consistently explain precisely how c-Myc exerts its effects across a broad range of cancer types. Until now, that is.
The prevailing theory emerging from ...
Chicago (September 27, 2012)—New comprehensive guidelines for the pre- operative care of the nation's elderly patients have been issued by the American College of Surgeons (ACS) and the American Geriatrics Society (AGS). The joint guidelines—published in the October issue of the Journal of the American College of Surgeons—apply to every patient who is 65 years and older as defined by Medicare regulations. The guidelines are the culmination of two years of research and analysis by a multidisciplinary expert panel representing the ACS and AGS, as well as by expert representatives ...