(Press-News.org) Palo Alto, CA—Researchers at the Carnegie Institution for Science, with colleagues at the Nara Institute of Science and Technology, observed for the first time a fundamental process of cellular organization in living plant cells: the birth of microtubules by studying recruitment and activity of individual protein complexes that create the cellular protein network known as the microtubule cytoskeleton—the scaffolding that provides structure and ultimately form and shape to the cell. These fundamental results could be important to agricultural research and are published in the October 10, 2010, early on-line edition of Nature Cell Biology.
All plant and animal cells rely on an elaborate array of molecular rods built from the protein tubulin. These rods, called microtubules, organize the cell and generate forces needed to support cell shape, cell movement, and importantly, cell division. To perform these tasks, microtubules need to be organized into specific configurations. Animal cells separate their chromosomes during cell division by organizing the microtubules network from centrioles. A big mystery is how plants, which do not have centrioles organize their microtubule network. Understanding these mechanisms of molecular organization is a primary goal of cell biology.
As co-author David Ehrhardt from Carnegie's Department of Plant Biology explained: "In many cells, microtubule arrays are created with aid of a centralized body called a centrosome. Centrosomal arrays have been a focus of research for decades and much is now understood about how these arrays are created and organized by the centrosome. However, many differentiated animal cells, and flowering plant cells have arrays that are created independently of a centrosome. In fact, flowering plants lack centrosomes all together. Although these centrosome arrays are common in nature, they have received less study and their organization mechanisms remain largely mysterious."
The Ehrhardt lab previously found that individual microtubules in plant cell arrays are born at many locations along the inside of the cell membrane, where they are detached from the sites of birth and move along the membrane to interact with other microtubules. A primary challenge for investigating the molecular basis for these processes has been visualization of the protein complexes that give birth to new microtubule polymers.
The Ehrhardt and Hashimoto groups met this challenge by tagging a component of these complexes, known as nucleating complexes, with multiple copies of a fluorescent protein derived from jellyfish. When introduced into plant cells and visualized with highly sensitive spinning disk confocal microscopy, this tagged protein permitted the researchers to observe what happens as the microtubule array is being built.
Ehrhardt continued: "In centrosomal arrays, these nucleating complexes are recruited to the centrosome, where they give rise to a star-shaped array centered near the nucleus. By contrast, in the cells we studied these complexes were distributed at the cell membrane and were primarily located along the sides of other microtubules, an association that was correlated with their activity. So, microtubules appear to be important for locating and regulating their own formation proteins. In addition, daughter microtubules were created either at a distinct angle to the mother polymer, or in parallel to it. This choice of angle may play a role in either creating new organizational states or maintaining an existing one."
The investigators observed that formation complexes frequently did not remain in place after creating new microtubules, but often left, presumably to go through a new cycle of microtubule creation at a new location. The scientists hypothesized that liberation of the complexes from mother microtubules might be related to the mechanism of daughter microtubule detachment from origination sites.
To explore these questions, the investigators introduced their probe into a mutant lacking the protein katanin (named for a Japanese word for sword), whose job it is to cut microtubules into pieces. The scientists thought that katanin might be responsible for separating new microtubules from their formation complexes. In fact, without the cutting protein, the daughter microtubules completely failed to detach from their birth sites, and tagged formation complexes remained at the base of the daughter microtubule. The only time they saw a formation complex leave in the mutants was when the microtubule completely depolymerized—that is, the process whereby a large molecule decomposes into individual units. When this occurred, the tagged complex also disappeared. The results indicate that the formation complexes remain associated with mother microtubules until the daughter microtubule is removed either by katanin cutting or by complete depolymerization.
"As far as we are aware, this research is the first to witness the dynamics of individual gamma tubulin complex processes, which are fundamental to every plant and animal," remarked Ehrhardt. "We look at our plant system as a model for non-centrosomal array organization, which also occurs in many important differentiated animal cells. While we anticipate that some of the molecular players may be different, many of the principles may be similar. What we learn here could help us understand basic mechanisms underlying crop plant growth and development, and could have implications for understanding the process of acquiring cell shape and function of human cells."
###
*Authors on the paper are Masayoshi Nakamura of the Nara Institute of Science and Technology; David Ehrhardt of Carnegie; and Takashi Hashimoto of Nara and Stanford University. The work was partially supported by the Carnegie Institution for Science, the Japanese NARA Institute of Science and Technology and the Ministry of Education, Culture, Sports, Science and Technology.
The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.
END
Strasbourg, 11 October 2010 - A Europe-wide network of labs focusing on RNA research is needed to make the most of RNA's high potential for treating a wide range of diseases. The recommendation for this virtual research institute comes from a panel of biologists at the European Science Foundation in a report published today, 'RNA World: a new frontier in biomedical research'.
Ten years on from the human genome project, RNA (ribonucleic acid) has stolen some of DNA's limelight. The basic ingredient of our genes, DNA long outshone the other form of genetic material in our ...
An international consortium has made significant inroads into uncovering the genetic basis of obesity by identifying 18 new gene sites associated with overall obesity and 13 that affect fat distribution. The studies include data from nearly a quarter of a million participants, the largest genetic investigation of human traits to date. The papers, both from the GIANT (Genetic Investigation of ANthropometric Traits) consortium – which consists of more than 400 scientists from 280 research institutions worldwide – will appear in Nature Genetics and are receiving early online ...
Geologists studying the Jan. 12 Haiti earthquake say the risk of destructive tsunamis is higher than expected in places such as Kingston, Istanbul, and Los Angeles.
Like Haiti's capital, these cities all lie near the coast and near an active geologic feature called a strike-slip fault where two tectonic plates slide past each other like two hands rubbing against each other.
Until now, geologists did not consider the tsunami risk to be very high in these places because when these faults rupture, they usually do not vertically displace the seafloor much, which is how ...
NEW BRUNSWICK, N.J. – Physicists at Rutgers University have discovered new properties in a material that could result in efficient and inexpensive plastic solar cells for pollution-free electricity production.
The discovery, posted online and slated for publication in an upcoming issue of the journal Nature Materials, reveals that energy-carrying particles generated by packets of light can travel on the order of a thousand times farther in organic (carbon-based) semiconductors than scientists previously observed. This boosts scientists' hopes that solar cells based on ...
CORVALLIS, Ore. – The soils in large areas of the Southern Hemisphere, including major portions of Australia, Africa and South America, have been drying up in the past decade, a group of researchers conclude in the first major study to ever examine "evapotranspiration" on a global basis.
Most climate models have suggested that evapotranspiration, which is the movement of water from the land to the atmosphere, would increase with global warming. The new research, published online this week in the journal Nature, found that's exactly what was happening from 1982 to the ...
Researchers at the Georgia Institute of Technology and Emory University have developed a novel approach for delivering small bits of genetic material into the body to improve the treatment of inflammatory bowel diseases. Delivering short strands of RNA into cells has become a popular research area because of its potential therapeutic applications, but how to deliver them into targeted cells in a living organism has been an obstacle.
In the Oct. 10 advance online edition of the journal Nature Materials, researchers describe how they encapsulated short pieces of RNA into ...
Children who spend longer than two hours in front of a computer or television screen are more likely to suffer psychological difficulties, regardless of how physically active they are.
The PEACH project, a study of over a 1,000 children aged between ten and 11, measured the time children spent in front of a screen as well as their psychological well being. In addition, an activity monitor recorded both children's sedentary time and moderate physical activity. The results showed that more than two hours per day of both television viewing and recreational computer use ...
Racial disparities in the receipt of breast cancer care persist despite accounting for patients' insurance and social and economic status. That is the conclusion of a study published early online in Cancer, a peer-reviewed journal of the American Cancer Society. The findings suggest that greater efforts are needed to better understand disparities in breast cancer care and to ensure that all affected women receive equal and effective treatments.
Studies have demonstrated that black and Hispanic women are less likely to receive recommended breast cancer treatments than ...
Unless the IT industry adopts new energy-efficient technologies in the coming decade, it runs a serious risk of being unable to contribute to growing the global economy if limits are placed on carbon emissions. The findings come from an 18-month investigation by scholars at the Institute for Sustainable and Applied Infodynamics (ISAID) in Singapore and Rice University's Baker Institute for Public Policy in Houston.
"In the face of growing global concerns over greenhouse carbon emission, the key for the industry is finding new technologies that deliver more performance ...
For most American students, spending a semester or two studying in a foreign country means the opportunity to improve foreign language skills and become immersed in a different culture. For others, studying abroad is more like a prolonged spring break: it can be months with fewer academic responsibilities, plentiful bars and alcohol, and parents far away.
New results from University of Washington researchers point to why some students drink more alcohol while abroad and suggest ways to intervene.
"We hear stories in the media and elsewhere about students going abroad, ...