(Press-News.org) STANFORD, Calif. — Stanford University School of Medicine scientists have used bioengineered mice with livers composed largely of human cells to characterize a drug about to enter early-stage clinical development for combating hepatitis C.
Tests using the new mouse model accurately predicted significant aspects of the drug's behavior in humans — including its interaction with another drug and the profile of its major breakdown products in the body (called metabolites) — far more accurately than would have been achieved using current methods.
The study will be published online Oct. 31 in the Journal of Pharmacology and Experimental Therapeutics. Its findings hold potentially huge implications for drug development in general, because key aspects of the tested drug's activity and properties would likely have gone unnoticed using the kind of mouse study that is the current standard for preclinical tests of candidate drugs. Importantly, the results strongly hint that the drug, clemizole, could be both safe and an effective drug-cocktail component in humans infected with HCV, the virus that causes hepatitis C.
"This gives us a new tool for improving the testing of drugs before they are given to people in clinical trials," said the study's senior author, Gary Peltz, MD, PhD, professor of anesthesiology, pain and perioperative medicine.
All too often, drugs showing tremendous promise in preclinical animal assessments fail in human trials because of unforeseen safety problems, said Peltz. "It's often not the drug itself, but one of its metabolites, that is responsible for a drug-induced toxicity."
Unexpected interactions between drugs pose another big problem for drug development. A drug may prolong or attenuate another medication's activity by, for example, affecting how the second drug is metabolized. With more than 30 percent of all people over age 57 taking five or more prescription drugs at any given time, that's no trivial matter.
The drug tested in the study, clemizole, was widely prescribed in the 1950s and 1960s as an antihistamine, but it is no longer used because more effective antihistamines now exist, said Jeffrey Glenn, MD, PhD, associate professor of gastroenterology and hepatology, and of microbiology and immunology. "Moreover, the drug tends to accumulate in the liver, which is not ideal for a general-purpose antihistamine but could be very attractive for a virus like HCV that only infects the liver," he said.
Glenn, who is a hepatitis C expert and a co-author of the new study, recently led a team that discovered clemizole impedes replication of HCV. More than 150 million people are infected with HCV, the leading cause of liver transplant operations in the United States and primary cause of liver cancer. Current HCV treatments are highly expensive and, frequently, harsh.
Clemizole is both cheap and safe. But because it was approved before the advent of some testing requirements now routinely in place for new drugs, little is known about how the compound is metabolized or how it interacts with other drugs in the human body, Glenn said.
These days, before any drug can go into people it must first be rigorously tested in animals, such as rodents, to determine tolerability or adverse effects and whether it interacts with other drugs patients are likely to be taking. But mice metabolize things differently from humans, largely because our livers are different.
The liver is the body's chemistry set. It operates like a set of carefully placed workstations in an assembly line, in which batteries of enzymes (protein machines that do most of the body's work) manufacture substances vital to our survival as well as metabolize ingested substances, including drugs.
Mouse and human livers have different drug-metabolizing enzymes. So the two species will produce different metabolites or different amounts of the same metabolites from the same drug. Attempts to get around this have included bioengineering so-called chimeric mice that have "humanized" livers, in which mouse liver tissue has been at least partly replaced by human cells. These efforts have involved introducing toxins or genetic defects to kill off the intrinsic mouse liver cells to make room for their replacement by human ones. But the organ's ongoing malfunction impaired human-cell growth or made "readouts" from drug testing suspect.
So Peltz and collaborators at the Central Institute for Experimental Animals in Japan built a better mousetrap. In 2011, they produced a genetically engineered mouse in which the liver could be humanized without inducing ongoing liver toxicity. The researchers administered a short-acting, non-toxic dose of a drug to mice that had been bioengineered so that the drug would activate a cell-killing mechanism only within their liver cells. Once this drug was cleared, the implanted human liver cells could develop normally in their new environment, contributing to a reconstituted liver that largely recapitulated the architecture and chemistry of a functioning human liver. The human cells produced human metabolites; the mouse cells continued to produce mouse metabolites.
The chimeric mice used in the new study varied in the extent to which their livers were composed of human cells. Their overall metabolic profiles could be likened to two images projected in juxtaposition on a screen, with the difference between the two images corresponding to the extent that a mouse's liver had been humanized. To determine the extent of liver humanization for each mouse, Peltz and his associates measured blood levels of the human version of albumin, a circulating protein produced in the liver. A mathematical algorithm the researchers developed allowed them to accurately determine which metabolites, and how much of each, could be attributed to mouse and human liver cells, respectively.
Next, Manhong Wu, PhD, a research associate in the Peltz lab and a study co-author, examined the metabolism of clemizole in both humans and several ordinary mouse strains. Clemizole's metabolic pattern was the same in all of the tested strains, but was quite different from that observed in the blood of 10 human subjects. More than half of the total amount of clemizole plus its metabolites in human blood consisted of a single metabolite, known as M1. In ordinary mice, M1 is a trace product.
However, postdoctoral scholar Yajing Hu, PhD, who shares first authorship with visiting professor Toshiko Nishimura, MD, PhD, found that the chimeric mice did produce M1, roughly in proportion to the extent to which their own liver cells had been replaced by human ones. Further studies showed that M1 itself has antiviral activity that can contribute to clemizole's overall potency in humans — a fact that would have been ignored on the basis of testing clemizole in ordinary mice.
Then Peltz and his colleagues tested the chimeric mice's capacity to predict potential interactions between clemizole and other drugs. They picked a drug called ritonavir, which is known to interfere with a metabolic enzyme that is crucial to the breakdown of many drugs in humans. Chimeric mice were first treated with clemizole alone, and later given a combination of clemizole and ritonavir. Afterward, the scientists measured levels of clemizole and its metabolites in the mice's blood. Co-administering ritonavir caused clemizole's blood level to increase and to remain elevated for longer than was the case with clemizole alone.
To see if this held true in humans, Peltz's group initiated a small pilot study with three HCV-positive individuals. As occurred in the chimeric mice, co-administration of ritonavir caused a substantial increase in the blood levels of clemizole in two subjects and a smaller increase in the third subject.
In lab-dish tests assessing clinical potential, a combination of M1 (clemizole's primary metabolite) and boceprevir, a recently approved anti-HCV drug, proved to have far more anti-viral activity than did either compound alone — a synergy that Glenn called "dramatic."
All of the findings validate the utility of the new mouse model as well as clemizole's clinical potential, said Peltz. Clemizole has a half-life of only about 15 minutes in mice, so on the basis of ordinary mouse studies it might well have been discarded, he said. "You can't commercialize a drug you have to take 10 or 20 times a day." Further, Peltz said, "if clemizole's major human metabolite, M1, did cause toxicity in humans, ordinary mouse tests wouldn't have caught it. Conversely, if a metabolite produced in mice but not in humans had a toxic effect, studies performed on ordinary mice would have sent a false alarm."
###The study was funded by the National Institutes of Health. Additional Stanford co-authors were research associates Menashe Elazar, PhD, and Ming Zheng, PhD; visiting professor William Fitch, PhD, and medical students Michael Liu and Edward Pham.
Information about the medical school's Department of Anesthesiology, Pain and Perioperative Medicine, which also supported this work, is available at http://med.stanford.edu/anesthesia/.
The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.
Mice with 'humanized' livers improve early drug testing, Stanford scientists show
2012-11-01
ELSE PRESS RELEASES FROM THIS DATE:
Regional analysis masks substantial local variation in health care spending
2012-11-01
PITTSBURGH, Oct. 31, 2012 – Reforming Medicare payments based on large geographic regions may be too bluntly targeted to promote the best use of health care resources, a new analysis from the University of Pittsburgh Graduate School of Public Health suggests. The analysis will be published in the Nov. 1 issue of the New England Journal of Medicine.
"Much policy attention has been drawn to the large geographic variation in health care spending across regions, and for good reason – because regional variation points to inefficient use of resources," said lead author Yuting ...
Tabletop fault model reveals why some quakes result in faster shaking
2012-11-01
Berkeley — The more time it takes for an earthquake fault to heal, the faster the shake it will produce when it finally ruptures, according to a new study by engineers at the University of California, Berkeley, who conducted their work using a tabletop model of a quake fault.
"The high frequency waves of an earthquake — the kind that produces the rapid jolts — are not well understood because they are more difficult to measure and more difficult to model," said study lead author Gregory McLaskey, a former UC Berkeley Ph.D. student in civil and environmental engineering. ...
Unexpected factor contributes to melanoma risk in red-haired, fair-skinned individuals
2012-11-01
The well-established elevated risk of melanoma among people with red hair and fair skin may be caused by more than just a lack of natural protection against ultraviolet (UV) radiation. In an article receiving Advance Online Publication in Nature, Massachusetts General Hospital (MGH) Cutaneous Biology Research Center (CBRC)and Cancer Center researchers report finding that the type of skin pigment predominantly found in red-haired, fair-skinned individuals may itself contribute to the development of melanoma.
"We've known for a long time that people with red hair and ...
Pond skating insects reveal water-walking secrets
2012-11-01
This month's special issue of Physics World is devoted to animal physics, and includes science writer Stephen Ornes explanation of how pond skaters effortlessly skip across water leaving nothing but a small ripple in their wake.
As Ornes writes, our current understanding of the mechanisms adopted by the pond skater is down to the efforts of David Hu, who as a mathematics graduate from the Massachusetts Institute of Technology spent four years studying their behaviour.
Hu, along with his PhD supervisor John Bush, found that pond skaters use the middle of their three ...
Sleep duration affects hunger differently in men and women
2012-11-01
A new study suggests that increasing the amount of sleep that adults get could lead to reduced food intake, but the hormonal process differs between men and women.
"Restricting sleep in healthy, normal weight participants has limited effects on metabolic risk factors and may affect food intake regulating hormones differently in men and women," said Marie-Pierre St-Onge, PhD, FAHA, the study's principal investigator. "We were surprised by the lack of a significant effect of sleep on glucose and insulin, leptin, and sex differences in the hunger-stimulating hormone ghrelin ...
Scientific team sequences 1,092 human genomes to determine standard range of human genetic variation
2012-11-01
Completing the second phase of the 1000 Genomes Project, a multinational team of scientists reports that they have sampled a total of 1092 individuals from 14 different populations and sequenced their full genomes. The researchers described the feat as a collegial effort to equip biologists and physicians with information that can be used to understand the normal range of human genetic variants so that a patient's disease genome can be interpreted in a broader context.
A report on the research, published online in Nature on Nov. 1 represents the culmination of five years ...
1,000 Genomes Project paints detailed picture of human variation
2012-11-01
HOUSTON -- (Nov. 1, 2012) – First, there was the single human reference genome completed in 2003. Then there was the HapMap project to identify the common genetic variants occurring in human beings with the first map published in 2005. Now an international consortium has released the first phase of the 1,000 Genomes Project that profiles the rare and common genetic variations in 1,092 people drawn from 14 human populations from Europe, Africa, East Asia and the Americas.
The next phase of the project will include as many as 3,000 individuals, said Dr. Fuli Yu (www.bcm.edu/genetics/index.cfm?pmid=23673
), ...
New genetic links for inflammatory bowel disease uncovered
2012-11-01
Crohn's disease (CD) and ulcerative colitis (UC) – inflammatory diseases of the gastrointestinal tract – have puzzled the scientific community for decades. Ten years ago, researchers recognized that both genes and the environment contributed to these diseases but knew little about precisely how and why illness occurred. To begin to narrow in on the key pathways involved, they would need thousands of patients' samples, millions of data points, and the commitment of physicians and scientists at dozens of institutions.
Today, researchers from across the CD and UC communities ...
Fear of math can hurt
2012-11-01
Fear of math can activate regions of the brain linked with the experience of physical pain and visceral threat detection, according to research published Oct 31 by Ian Lyons and colleagues at the University of Chicago in the open access journal PLOS ONE.
The researchers found that in individuals who experience high levels of anxiety when facing math tasks, the anticipation of math increases activity in regions of the brain associated with the physical sensation of pain. The higher an individual's math anxiety, the more such neural activity was increased.
According ...
5 year olds are generous only when they're watched
2012-11-01
Children as young as five are generous when others are aware of their actions, but antisocial when sharing with a recipient who can't see them, according to research published Oct. 31 in the open access journal PLOS ONE by Kristin Lyn Leimgruber and colleagues from Yale University.
Adults are more likely to behave in ways that enhance their reputation when they are being watched or their actions are likely to be made public than when they are anonymous, but this study examines the origins of such behavior in young children for the first time. For their study, the researchers ...