(Press-News.org) November 21, 2012 — (BRONX, NY) — During embryonic development, the all-important coronary arteries arise from cells previously considered incapable of producing them, according to scientists at Albert Einstein College of Medicine of Yeshiva University. The research, carried out in mice and published today in the online edition of the journal Cell, may speed development of regenerative therapies for heart disease.
The research, carried out in mice and published today in the online edition of the journal Cell, may speed development of regenerative therapies for heart disease.
Each year, more than one million Americans undergo coronary revascularization which includes coronary artery bypass graft (CABG). During CABG, doctors remove a portion of a healthy vein, usually from a patient’s leg, then bypass diseased areas of the coronary arteries. While the procedure has become routine and is considered relatively safe and long-lasting, the veins used during bypass do not completely mimic the arteries they bypass. They can sometimes re-clog, a process known as restenosis, requiring further procedures. Therefore, the ability to regenerate coronary arteries could usher in a new wave of more effective cardiac care.
Coronary arteries nourish heart muscle with the nutrients and oxygen it needs for pumping. Heart attacks occur when coronary arteries become blocked, causing heart muscle to die. Recent studies had suggested that during development, the coronary arteries originate from cells of the sinus venosus (a heart cavity that exists only in embryos) or from the epicardium (the heart’s outermost layer).
In their study, Einstein scientists used a wide variety of research tools to show that the coronary arteries largely arise from cells of the endocardium, the heart’s innermost cell layer. In particular, the arteries arise from endocardial cells lining the ventricles (the two large chambers of the heart).
“The prevailing wisdom was that endocardial cells are terminally differentiated, meaning they cannot become any other cell type,” said study leader
Bin Zhou, M.D., Ph.D., associate professor of genetics, of pediatrics, and of medicine at Einstein.“But our study shows that one population of endocardial cells is actually responsible for forming the coronary arteries.”
More specifically, ventricular endocardial cells develop into coronary artery progenitor (precursor) cells, which then go on to form the coronary arteries. Dr. Zhou and his colleagues also identified a key signaling pathway involved in transforming the ventricular endocardial cells into coronary artery progenitor cells. Einstein has filed a patent application related to this research. The Nfatc1 cell technology is available for licensing.
The Einstein researchers are now trying to identify all the signaling mechanisms that guide the development of the coronary arteries, with the aim of one day synthesizing healthy coronary arteries to replace diseased ones. “When provided with the right environmental signals, vascular progenitor cells can form functional vessels in a petri dish,” said Dr. Zhou. “If we can figure out the critical signals regulating coronary artery differentiation and formation, then perhaps we could coax ventricular endocardial cells to build new coronary arteries that can replace damaged ones—basically duplicating the way that these vessels are formed in the body,” said Dr. Zhou.
###
Dr. Zhou’s paper is titled, “Endocardial Cells Form the Coronary Arteries by Angiogenesis through Myocardial-Endocardial VEGF Signaling.” Other Einstein contributors are Bingruo Wu, M.D.; Zheng Zhang, Ph.D.; Wendy Lui, B.S.; Xiangjian Chen, M.D., PhD.; Yidong Wang, Ph.D.; Alyssa Chamberlain, B.S.; Brian P. O’Rourke, B.S.; David J. Sharp, Ph.D.; Deyou Zheng, Ph.D.; and Jack Lenz, Ph.D. Other contributors include Ricardo A. Moreno-Rodriguez, Ph.D. and Roger R. Markwald, Ph.D., at Medical University of South Carolina, Charleston, SC; H. Scott Baldwin, M.D. at Vanderbilt University, Nashville, TN; and Ching-Pin Chang, M.D., Ph.D., at Stanford University School of Medicine, Stanford, CA.
The study, initiated at Vanderbilt University and completed at Albert Einstein College of Medicine, was supported by grants from the National Institutes of Health (HL078881 to Dr. Zhou, HL100398 to H. Scott Baldwin, and HL85345).
About Albert Einstein College of Medicine of Yeshiva University
Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. During the 2009-2010 academic year, Einstein is home to 724 M.D. students, 248 Ph.D.students, 117 students in the combined M.D./Ph.D. program, and 368 postdoctoral research fellows.
The College of Medicine has 2,522 fulltime faculty members located on the main campus and at its clinical affiliates. 2011, Einstein received nearly $170 million in awards from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities.
Its partnership with Montefiore Medical Center, the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients.
Through its extensive affiliation network involving Montefiore, Jacobi Medical Center – Einstein's founding hospital, and five other hospital systems in the Bronx, Manhattan, Long Island and Brooklyn, Einstein runs one of the largest post-graduate medical training programs in the United States, offering approximately 155 residency programs to more than 2,200 physicians in training. For more information, please visit http://www.einstein.yu.edu and follow us on Twitter @EinsteinMed.
Ottawa (November 23rd, 2012) - An in-depth, authoritative assessment of women in university research has found that although there has been significant progress in the representation of women in the university research ranks, there are still gender equity challenges that must be overcome and the passage of time will not be enough to ensure parity.
A newly released report by the Council of Canadian Academies entitled, Strengthening Canada's Research Capacity: The Gender Dimension provides an assessment of the the factors that influence university research careers of women. ...
PHILADELPHIA — New understanding of molecular changes that convert harmless cells surrounding ovarian cancer cells into cells that promote tumor growth and metastasis provides potential new therapeutic targets for this deadly disease, according to data published in Cancer Discovery, a journal of the American Association for Cancer Research.
"New approaches for treating patients with ovarian cancer are desperately needed," said Ernst Lengyel, M.D., Ph.D., professor in the department of obstetrics and gynecology at the University of Chicago. "There have been no new approaches ...
Unraveling the mechanism that ovarian cancer cells use to change normal cells around them into cells that promote tumor growth has identified several new targets for treatment of this deadly disease.
In the December issue of the American Association for Cancer Research journal Cancer Discovery, a team or researchers from the University of Chicago Medicine and Northwestern University Feinberg School of Medicine show that ovarian cancer cells induce nearby cells to alter their production of three microRNAs—small strands of genetic material that are important regulators ...
In comparison to modern birds, the prehistoric Archaeopteryx and bird-like dinosaurs before them had a more primitive version of a wing. The findings, reported on November 21 in Current Biology, a Cell Press publication, lend support to the notion that birds are the descendants of gliding dinosaurs that spent much of their days in the trees.
"By studying fossils carefully, we are now able to start piecing together how the wing evolved," said Nicholas Longrich of Yale University. "Before, it seemed that we had more or less modern wings from the Jurassic onwards. Now it's ...
Cancer therapies often have short-lived benefits due to the emergence of genetic mutations that cause drug resistance. A key gene that determines resistance to a range of cancer drugs has been reported in a study published by Cell Press November 21st in the journal Cell. The study reveals a biomarker that can predict responses to cancer drugs and offers a strategy to treat drug-resistant tumors based on their genetic signature.
"We need to understand the mechanisms of drug resistance to effectively prevent it from occurring in the first place," says senior study author ...
Women live longer than men. Individuals can appear or feel years younger – or older – than their chronological age. Diseases can affect our aging process. When it comes to biology, our clocks clearly tick differently.
In a new study, researchers at the University of California, San Diego School of Medicine, with colleagues elsewhere, describe markers and a model that quantify how aging occurs at the level of genes and molecules, providing not just a more precise way to determine how old someone is, but also perhaps anticipate or treat ailments and diseases that come ...
CAMBRIDGE, MA -- One of the biggest puzzles in neuroscience is how our brains encode thoughts, such as perceptions and memories, at the cellular level. Some evidence suggests that ensembles of neurons represent each unique piece of information, but no one knows just what these ensembles look like, or how they form.
A new study from researchers at MIT and Boston University (BU) sheds light on how neural ensembles form thoughts and support the flexibility to change one's mind. The research team, led by Earl Miller, the Picower Professor of Neuroscience at MIT, identified ...
A*STAR scientists have identified the enzyme, telomerase, as a cause of chronic inflammation in human cancers. Chronic inflammation is now recognized as a key underlying cause for the development of many human cancers, autoimmune disorders, neurodegenerative diseases, and metabolic diseases such as diabetes. This enzyme, which is known to be responsible for providing cancer cells the endless ability to divide, is now found to also jumpstart and maintain chronic inflammation in cancers.
In identifying this enzyme, inflammation can be prevented or reduced, and the common ...
Stretching across central Africa, the Congo Basin forest is the second largest tract of rainforest in the world and a lifeline for more than 60 million people – providing food and income for many remote communities, storing huge amounts of carbon, supporting unique ecosystems and regulating the flow of the major rivers across Central Africa. Yet the Congo's forests are being cleared at an alarming rate amid global demand for the continent's minerals, energy and wood resources. Current methods and rates of extracting these resources are unsustainable and threatening the ...
TORONTO, Nov. 21, 2012-- New research has found there are several different ways that kidney tumours can achieve the same result – namely, grow.
Scientists have been trying to figure out how different people have kidney tumours with the same histology, or shape, although the genetic changes can vary among individual tumours.
Solving that puzzle could have implications for the diagnosis and treatment if kidney cancer, which has 35 per cent mortality rate and is becoming more common. Despite advances in early detection and treatment, the mortality rate hasn't changed in ...