(Press-News.org) Scientists have taken inspiration from one of the oldest natural materials to exploit the extraordinary qualities of graphene, a material set to revolutionise fields from computers and batteries to composite materials.
Published today in Nature Communications, a Monash University study led by Professor Dan Li has established, for the first time, an effective way of forming graphene, which normally exists in very thin layers, into useful three-dimensional forms by mirroring the structure of cork.
Graphene is formed when graphite is broken down into layers one atom thick. In this form, it is very strong, chemically stable and an excellent conductor of electricity. It has a wide range of potential applications, from batteries that are able to recharge in a matter of seconds, to biological tissue scaffolds for use in organ transplant and even regeneration.
Professor Li, from the Department of Materials Engineering, said previous research had focused mainly on the intrinsic properties and applications of the individual sheets, while his team tackled the challenge of engineering the sheets into macroscopically-useable 3D structures.
"When the atomic graphene sheets are assembled together to form 3D structures, they normally end up with porous monoliths that are brittle and perform poorly," Professor Li said.
"It was generally thought to be highly unlikely that graphene could be engineered into a form that was elastic, which means it recovers well from stress or pressure."
The researchers used cork, which is lightweight yet strong, as a model to overcome this challenge.
PhD student, Ling Qiu, also from the Department of Materials Engineering, said modern techniques have allowed scientists to analyse the structure of such materials and replicate nature's efficient design.
"The fibres in cork cell walls are closely packed to maximise strength and individual cells connect in a honeycomb structure which makes the material very elastic," Mr Qiu said.
Using a method called freeze casting, the researchers were able to form chemically modified graphene into a 3D structure that mimicked cork. The graphene blocks produced were lighter than air, able to support over 50,000 times their own weight, good conductors of electricity and highly elastic - able to recover from over 80 per cent deformation.
"We've been able to effectively preserve the extraordinary qualities of graphene in an elastic 3D form, which paves the way for investigations of new uses of graphene - from aerospace to tissue engineering," Professor Li said.
"Mimicking the structure of cork has made possible what was thought to be impossible."
### END
Cork the key to unlocking the potential of graphene
2012-12-04
ELSE PRESS RELEASES FROM THIS DATE:
Stanford geoscientist cites critical need for basic research to unleash promising energy sources
2012-12-04
"There is a critical need for scientists to address basic questions that have hindered the development of emerging energy resources, including geothermal, wind, solar and natural gas, from underground shale formations," said Mark Zoback, a professor of geophysics at Stanford University. "In this talk we present, from a university perspective, a few examples of fundamental research needs related to improved energy and resource recovery."
Zoback, an authority on shale gas development and hydraulic fracturing, served on the U.S. Secretary of Energy's Committee on Shale Gas ...
Titan, Saturn's largest moon, icier than thought, say Stanford scientists
2012-12-04
A new analysis of topographic and gravity data from Titan, the largest of Saturn's moons, indicates that Titan's icy outer crust is twice as thick as has generally been thought.
Scientists have long suspected that a vast ocean of liquid water lies under the crust. The new study suggests that the internally generated heat that keeps that ocean from freezing solid depends far more on Titan's interactions with Saturn and its other moons than had been suspected.
Howard Zebker, a professor of geophysics and of electrical engineering at Stanford University, will present the ...
Himalayas and Pacific Northwest could experience major earthquakes, Stanford geophysicists say
2012-12-04
Stanford geophysicists are well represented at the meeting of the American Geophysical Union this week in San Francisco. Included among the many presentations will be several studies that relate to predicting – and preparing for – major earthquakes in the Himalaya Mountains and the Pacific Northwest.
The AGU Fall Meeting is the largest worldwide conference in the geophysical sciences, attracting more than 20,000 Earth and space scientists, educators, students, and other leaders. This 45th annual fall meeting is taking place through Dec. 7 at the Moscone Convention Center ...
Method developed by VTT targets diagnosis of early Alzheimer's disease
2012-12-04
A software tool called PredictAD developed by VTT Technical Research Centre of Finland promises to enable earlier diagnosis of the disease on the basis of patient measurements and large databases. Alzheimer's disease currently takes on average 20 months to diagnose in Europe. VTT has shown that the new method could allow as many as half of patients to get a diagnosis approximately a year earlier.
VTT has been studying whether patients suffering from memory problems could be diagnosed with Alzheimer's disease at an earlier stage in the light of their measurement values. ...
Fitness for toad sperm: The secret is to mate frequently
2012-12-04
Fertility tests frequently reveal that males have problems with the quality of their sperm. The problems often relate to sperm senescence, which is a reduction in quality with age. Sperm senescence can arise either before or after the DNA in the sperm cells is produced by a process known as meiosis. So-called "pre-meiotic" senescence results from accumulated damage in the germline cells with increasing age and results in older males having sperm of lower quality. Post-meiotic senescence occurs after the sperm cells have been produced, either during storage of sperm ...
The dance of quantum tornadoes
2012-12-04
Tornado-like vortexes can be produced in bizarre fluids which are controlled by quantum mechanics, completely unlike normal liquids. New research published today in the journal Nature Communications demonstrates how massed ranks of these quantum twisters line up in rows, and paves the way for engineering quantum circuits and chips measuring motion ultra-precisely.
The destructive power of rampaging tornadoes defeats the human ability to control them. A Cambridge team has managed to create and control hundreds of tiny twisters on a semiconductor chip. By controlling where ...
Moderate coffee consumption may reduce risk of diabetes by up to 25 percent
2012-12-04
Drinking three to four cups of coffee per day may help to prevent type 2 diabetes according to research highlighted in a session report published by the Institute for Scientific Information on Coffee (ISIC), a not-for-profit organisation devoted to the study and disclosure of science related to coffee and health.
Recent scientific evidence has consistently linked regular, moderate coffee consumption with a possible reduced risk of developing type 2 diabetes. An update of this research and key findings presented during a session at the 2012 World Congress on Prevention ...
Fox invasion threatens wave of extinction, UC research finds
2012-12-04
Using DNA detection techniques developed at the University, the team mapped the presence of foxes in Tasmania, predicted their spread and developed a model of their likely distribution as a blueprint for fox eradication, but swift and decisive action is needed.
University of Canberra professor in wildlife genetics and leader of the team, Stephen Sarre, found foxes are widespread in northern and eastern Tasmania and the model developed by his team forecasts they will spread even further with likely devastating consequences for the island's wildlife.
"There's nothing ...
Ray of hope for human Usher syndrome patients
2012-12-04
After years of basic research, scientists at Johannes Gutenberg University Mainz (JGU) are increasingly able to understand the mechanisms underlying the human Usher syndrome and are coming ever closer to finding a successful treatment approach. The scientists in the Usher research group of Professor Dr. Uwe Wolfrum are evaluating two different strategies. These involve either the repair of mutated genes or the deactivation of the genetic defects using agents. Based on results obtained to date, both options seem promising. Usher syndrome is a congenital disorder that causes ...
New study shows how copper restricts the spread of global antibiotic-resistant infections
2012-12-04
New research from the University of Southampton has shown that copper can prevent horizontal transmission of genes, which has contributed to the increasing number of antibiotic-resistant infections worldwide.
Horizontal gene transfer (HGT) in bacteria is largely responsible for the development of antibiotic-resistance, which has led to an increasing number of difficult-to-treat healthcare-associated infections (HCAIs).
The newly-published paper, which appears in the journal mBio, shows that while HGT can take place in the environment, on frequently-touched surfaces, ...